{"title":"利用多模态医学影像融合检测脑血管疾病的新方法","authors":"S. Paul, Shruti Jain","doi":"10.2174/0127722708288426240408042054","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nDiseases are medical situations that are allied with specific signs and symptoms. A disease may be instigated by internal dysfunction or external factors like pathogens. Cerebrovascular disease can progress from diverse causes, comprising thrombosis, atherosclerosis, cerebral venous thrombosis, or embolic arterial blood clot.\n\n\nOBJECTIVE\nIn this paper, authors have proposed a robust framework for the detection of cerebrovascular diseases employing two different proposals which were validated by use of other dataset.\n\n\nMETHODS\nIn proposed model 1, the Discrete Fourier transform is used for the fusion of CT and MR images which was classified them using machine learning techniques and pre-trained models while in proposed model 2, the cascaded model was proposed. The performance evaluation parameters like accuracy and losses were evaluated.\n\n\nRESULTS\n92% accuracy was obtained using Support Vector Machine using Gray Level Difference Statistics and Shape features with Principal Component Analysis as a feature selection technique while Inception V3 resulted in 95.6% accuracy while the cascaded model resulted in 96.21% accuracy.\n\n\nCONCLUSION\nThe cascaded model is later validated on other datasets which results in 0.11% and 0.14% accuracy improvement for TCIA and BRaTS datasets respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Detection of Cerebrovascular Disease using Multimodal Medical Image Fusion.\",\"authors\":\"S. Paul, Shruti Jain\",\"doi\":\"10.2174/0127722708288426240408042054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nDiseases are medical situations that are allied with specific signs and symptoms. A disease may be instigated by internal dysfunction or external factors like pathogens. Cerebrovascular disease can progress from diverse causes, comprising thrombosis, atherosclerosis, cerebral venous thrombosis, or embolic arterial blood clot.\\n\\n\\nOBJECTIVE\\nIn this paper, authors have proposed a robust framework for the detection of cerebrovascular diseases employing two different proposals which were validated by use of other dataset.\\n\\n\\nMETHODS\\nIn proposed model 1, the Discrete Fourier transform is used for the fusion of CT and MR images which was classified them using machine learning techniques and pre-trained models while in proposed model 2, the cascaded model was proposed. The performance evaluation parameters like accuracy and losses were evaluated.\\n\\n\\nRESULTS\\n92% accuracy was obtained using Support Vector Machine using Gray Level Difference Statistics and Shape features with Principal Component Analysis as a feature selection technique while Inception V3 resulted in 95.6% accuracy while the cascaded model resulted in 96.21% accuracy.\\n\\n\\nCONCLUSION\\nThe cascaded model is later validated on other datasets which results in 0.11% and 0.14% accuracy improvement for TCIA and BRaTS datasets respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0127722708288426240408042054\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0127722708288426240408042054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Novel Detection of Cerebrovascular Disease using Multimodal Medical Image Fusion.
BACKGROUND
Diseases are medical situations that are allied with specific signs and symptoms. A disease may be instigated by internal dysfunction or external factors like pathogens. Cerebrovascular disease can progress from diverse causes, comprising thrombosis, atherosclerosis, cerebral venous thrombosis, or embolic arterial blood clot.
OBJECTIVE
In this paper, authors have proposed a robust framework for the detection of cerebrovascular diseases employing two different proposals which were validated by use of other dataset.
METHODS
In proposed model 1, the Discrete Fourier transform is used for the fusion of CT and MR images which was classified them using machine learning techniques and pre-trained models while in proposed model 2, the cascaded model was proposed. The performance evaluation parameters like accuracy and losses were evaluated.
RESULTS
92% accuracy was obtained using Support Vector Machine using Gray Level Difference Statistics and Shape features with Principal Component Analysis as a feature selection technique while Inception V3 resulted in 95.6% accuracy while the cascaded model resulted in 96.21% accuracy.
CONCLUSION
The cascaded model is later validated on other datasets which results in 0.11% and 0.14% accuracy improvement for TCIA and BRaTS datasets respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.