{"title":"锂离子电池用高熵材料的最新进展和认识。","authors":"Songjun Feng, Hui Liu","doi":"10.1088/1361-6528/ad40b4","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries (LIBs) has extensively utilized in electric vehicles and portable electronics due to their high energy density and prolonged lifespan. However, the current commercial LIBs are plagued by relatively low energy density. High-entropy materials with multiple components have emerged as an efficient strategic approach for developing novel materials that effectively improve the overall performance of LIBs. This article provides a comprehensive review the recent advancements in rational design of innovative high-entropy materials for LIBs, as well as the exceptional lithium ion storage mechanism for high-entropy electrodes and considerable ionic conductivity for high-entropy electrolytes. This review also analyses the prominent effects of individual components on the high-entropy materials' exceptional capacity, considerable structural stability, rapid lithium ion diffusion, and excellent ionic conductivity. Furthermore, this review presents the synthesis methods and their influence on the morphology and properties of high-entropy materials. Ultimately, the remaining challenges and future research directions are outlined, aimed at developing more effective high-entropy materials and improving the overall electrochemical performance of LIBs. .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 41","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances and understanding of high-entropy materials for lithium-ion batteries.\",\"authors\":\"Songjun Feng, Hui Liu\",\"doi\":\"10.1088/1361-6528/ad40b4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries (LIBs) has extensively utilized in electric vehicles and portable electronics due to their high energy density and prolonged lifespan. However, the current commercial LIBs are plagued by relatively low energy density. High-entropy materials with multiple components have emerged as an efficient strategic approach for developing novel materials that effectively improve the overall performance of LIBs. This article provides a comprehensive review the recent advancements in rational design of innovative high-entropy materials for LIBs, as well as the exceptional lithium ion storage mechanism for high-entropy electrodes and considerable ionic conductivity for high-entropy electrolytes. This review also analyses the prominent effects of individual components on the high-entropy materials' exceptional capacity, considerable structural stability, rapid lithium ion diffusion, and excellent ionic conductivity. Furthermore, this review presents the synthesis methods and their influence on the morphology and properties of high-entropy materials. Ultimately, the remaining challenges and future research directions are outlined, aimed at developing more effective high-entropy materials and improving the overall electrochemical performance of LIBs. .\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" 41\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad40b4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad40b4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Recent advances and understanding of high-entropy materials for lithium-ion batteries.
Lithium-ion batteries (LIBs) has extensively utilized in electric vehicles and portable electronics due to their high energy density and prolonged lifespan. However, the current commercial LIBs are plagued by relatively low energy density. High-entropy materials with multiple components have emerged as an efficient strategic approach for developing novel materials that effectively improve the overall performance of LIBs. This article provides a comprehensive review the recent advancements in rational design of innovative high-entropy materials for LIBs, as well as the exceptional lithium ion storage mechanism for high-entropy electrodes and considerable ionic conductivity for high-entropy electrolytes. This review also analyses the prominent effects of individual components on the high-entropy materials' exceptional capacity, considerable structural stability, rapid lithium ion diffusion, and excellent ionic conductivity. Furthermore, this review presents the synthesis methods and their influence on the morphology and properties of high-entropy materials. Ultimately, the remaining challenges and future research directions are outlined, aimed at developing more effective high-entropy materials and improving the overall electrochemical performance of LIBs. .
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.