平洛伦兹零能列代数的分类

IF 0.8 3区 数学 Q2 MATHEMATICS
Ignacio Bajo, Saïd Benayadi, Hicham Lebzioui
{"title":"平洛伦兹零能列代数的分类","authors":"Ignacio Bajo,&nbsp;Saïd Benayadi,&nbsp;Hicham Lebzioui","doi":"10.1112/blms.13047","DOIUrl":null,"url":null,"abstract":"<p>We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if <span></span><math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>${\\mathfrak {h}}_{2k+1}$</annotation>\n </semantics></math> denotes the <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2k+1$</annotation>\n </semantics></math>-dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are <span></span><math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\mathfrak {h}}_3$</annotation>\n </semantics></math> and the semidirect products <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>R</mi>\n <msub>\n <mo>⋉</mo>\n <msub>\n <mi>F</mi>\n <mn>1</mn>\n </msub>\n </msub>\n <msub>\n <mi>h</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>${\\mathfrak {N}}_1(k)={\\mathbb {R}}\\ltimes _{ F_1}{\\mathfrak {h}}_{2k+1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>R</mi>\n <msub>\n <mo>⋉</mo>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>h</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mi>⊕</mi>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathfrak {N}}_2(k)={\\mathbb {R}}\\ltimes _{ F_2}({\\mathfrak {h}}_{2k+1}\\oplus {\\mathbb {R}})$</annotation>\n </semantics></math>, defined by some particular derivations <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$F_1,F_2$</annotation>\n </semantics></math>. In all those cases we also find the equivalence classes of flat Lorentzian products.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 6","pages":"2132-2149"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13047","citationCount":"0","resultStr":"{\"title\":\"Classification of flat Lorentzian nilpotent Lie algebras\",\"authors\":\"Ignacio Bajo,&nbsp;Saïd Benayadi,&nbsp;Hicham Lebzioui\",\"doi\":\"10.1112/blms.13047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if <span></span><math>\\n <semantics>\\n <msub>\\n <mi>h</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>${\\\\mathfrak {h}}_{2k+1}$</annotation>\\n </semantics></math> denotes the <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$2k+1$</annotation>\\n </semantics></math>-dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are <span></span><math>\\n <semantics>\\n <msub>\\n <mi>h</mi>\\n <mn>3</mn>\\n </msub>\\n <annotation>${\\\\mathfrak {h}}_3$</annotation>\\n </semantics></math> and the semidirect products <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>R</mi>\\n <msub>\\n <mo>⋉</mo>\\n <msub>\\n <mi>F</mi>\\n <mn>1</mn>\\n </msub>\\n </msub>\\n <msub>\\n <mi>h</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>${\\\\mathfrak {N}}_1(k)={\\\\mathbb {R}}\\\\ltimes _{ F_1}{\\\\mathfrak {h}}_{2k+1}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>R</mi>\\n <msub>\\n <mo>⋉</mo>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>h</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mi>⊕</mi>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\mathfrak {N}}_2(k)={\\\\mathbb {R}}\\\\ltimes _{ F_2}({\\\\mathfrak {h}}_{2k+1}\\\\oplus {\\\\mathbb {R}})$</annotation>\\n </semantics></math>, defined by some particular derivations <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$F_1,F_2$</annotation>\\n </semantics></math>. In all those cases we also find the equivalence classes of flat Lorentzian products.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 6\",\"pages\":\"2132-2149\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13047\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13047","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了扁平洛伦兹零能李代数的完整分类,也就是与赋有左不变洛伦兹曲率消失度量的零能李群相关的伪欧几里得李代数的完整分类。我们证明了每一个这样的李代数都是一个不可分解的平洛伦兹李代数和一个无性欧几里得和的直接和,并证明了,如果表示-维海森堡李代数,那么唯一不可分解的容许平洛伦兹度量的非阿贝尔李代数是 和 的半直接积 和 ,它们是由一些特定的推导定义的。在所有这些情况下,我们还可以找到平洛伦兹积的等价类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of flat Lorentzian nilpotent Lie algebras

We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if h 2 k + 1 ${\mathfrak {h}}_{2k+1}$ denotes the 2 k + 1 $2k+1$ -dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are h 3 ${\mathfrak {h}}_3$ and the semidirect products N 1 ( k ) = R F 1 h 2 k + 1 ${\mathfrak {N}}_1(k)={\mathbb {R}}\ltimes _{ F_1}{\mathfrak {h}}_{2k+1}$ and N 2 ( k ) = R F 2 ( h 2 k + 1 R ) ${\mathfrak {N}}_2(k)={\mathbb {R}}\ltimes _{ F_2}({\mathfrak {h}}_{2k+1}\oplus {\mathbb {R}})$ , defined by some particular derivations F 1 , F 2 $F_1,F_2$ . In all those cases we also find the equivalence classes of flat Lorentzian products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信