{"title":"平洛伦兹零能列代数的分类","authors":"Ignacio Bajo, Saïd Benayadi, Hicham Lebzioui","doi":"10.1112/blms.13047","DOIUrl":null,"url":null,"abstract":"<p>We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if <span></span><math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>${\\mathfrak {h}}_{2k+1}$</annotation>\n </semantics></math> denotes the <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2k+1$</annotation>\n </semantics></math>-dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are <span></span><math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mn>3</mn>\n </msub>\n <annotation>${\\mathfrak {h}}_3$</annotation>\n </semantics></math> and the semidirect products <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>R</mi>\n <msub>\n <mo>⋉</mo>\n <msub>\n <mi>F</mi>\n <mn>1</mn>\n </msub>\n </msub>\n <msub>\n <mi>h</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>${\\mathfrak {N}}_1(k)={\\mathbb {R}}\\ltimes _{ F_1}{\\mathfrak {h}}_{2k+1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>R</mi>\n <msub>\n <mo>⋉</mo>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>h</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mi>⊕</mi>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathfrak {N}}_2(k)={\\mathbb {R}}\\ltimes _{ F_2}({\\mathfrak {h}}_{2k+1}\\oplus {\\mathbb {R}})$</annotation>\n </semantics></math>, defined by some particular derivations <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$F_1,F_2$</annotation>\n </semantics></math>. In all those cases we also find the equivalence classes of flat Lorentzian products.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 6","pages":"2132-2149"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13047","citationCount":"0","resultStr":"{\"title\":\"Classification of flat Lorentzian nilpotent Lie algebras\",\"authors\":\"Ignacio Bajo, Saïd Benayadi, Hicham Lebzioui\",\"doi\":\"10.1112/blms.13047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if <span></span><math>\\n <semantics>\\n <msub>\\n <mi>h</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>${\\\\mathfrak {h}}_{2k+1}$</annotation>\\n </semantics></math> denotes the <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$2k+1$</annotation>\\n </semantics></math>-dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are <span></span><math>\\n <semantics>\\n <msub>\\n <mi>h</mi>\\n <mn>3</mn>\\n </msub>\\n <annotation>${\\\\mathfrak {h}}_3$</annotation>\\n </semantics></math> and the semidirect products <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>R</mi>\\n <msub>\\n <mo>⋉</mo>\\n <msub>\\n <mi>F</mi>\\n <mn>1</mn>\\n </msub>\\n </msub>\\n <msub>\\n <mi>h</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>${\\\\mathfrak {N}}_1(k)={\\\\mathbb {R}}\\\\ltimes _{ F_1}{\\\\mathfrak {h}}_{2k+1}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>R</mi>\\n <msub>\\n <mo>⋉</mo>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>h</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mi>⊕</mi>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\mathfrak {N}}_2(k)={\\\\mathbb {R}}\\\\ltimes _{ F_2}({\\\\mathfrak {h}}_{2k+1}\\\\oplus {\\\\mathbb {R}})$</annotation>\\n </semantics></math>, defined by some particular derivations <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$F_1,F_2$</annotation>\\n </semantics></math>. In all those cases we also find the equivalence classes of flat Lorentzian products.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 6\",\"pages\":\"2132-2149\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13047\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13047","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classification of flat Lorentzian nilpotent Lie algebras
We give a complete classification of flat Lorentzian nilpotent Lie algebras, this is to say of pseudo-Euclidean Lie algebras associated to nilpotent Lie groups endowed with a left-invariant Lorentzian metric of vanishing curvature. We prove that every such a Lie algebra is a direct sum of an indecomposable flat Lorentzian Lie algebra and an abelian Euclidean summand and show that, if denotes the -dimensional Heisenberg Lie algebra, then the only non-abelian Lie algebras admitting flat Lorentzian metrics which are indecomposable are and the semidirect products and , defined by some particular derivations . In all those cases we also find the equivalence classes of flat Lorentzian products.