磁共振成像放射组学在外部验证中预测脑转移瘤原发肿瘤组织学的能力有限

IF 3.7 Q1 CLINICAL NEUROLOGY
Quirin D. Strotzer, Thomas Wagner, Pia Angstwurm, K. Hense, Lucca Scheuermeyer, E. Noeva, Johannes Dinkel, Christian Stroszczynski, Claudia Fellner, M. Riemenschneider, K. Rosengarth, T. Pukrop, Isabel Wiesinger, Christina Wendl, A. Schicho
{"title":"磁共振成像放射组学在外部验证中预测脑转移瘤原发肿瘤组织学的能力有限","authors":"Quirin D. Strotzer, Thomas Wagner, Pia Angstwurm, K. Hense, Lucca Scheuermeyer, E. Noeva, Johannes Dinkel, Christian Stroszczynski, Claudia Fellner, M. Riemenschneider, K. Rosengarth, T. Pukrop, Isabel Wiesinger, Christina Wendl, A. Schicho","doi":"10.1093/noajnl/vdae060","DOIUrl":null,"url":null,"abstract":"\n \n \n Growing research demonstrates the ability to predict histology or genetic information of various malignancies using radiomic features extracted from imaging data. This study aimed to investigate MRI-based radiomics in predicting the primary tumor of brain metastases through internal and external validation, using oversampling techniques to address class imbalance.\n \n \n \n This IRB-approved retrospective multicenter study included brain metastases from lung cancer, melanoma, breast cancer, colorectal cancer, and a combined heterogenous group of other primary entities (five-class classification). Local data were acquired between 2003 and 2021 from 231 patients (545 metastases). External validation was performed with 82 patients (280 metastases) and 258 patients (809 metastases) from the publicly available Stanford BrainMetShare and the University of California San Francisco Brain Metastases Stereotactic Radiosurgery datasets, respectively. Pre-processing included brain extraction, bias correction, co-registration, intensity normalization, and semi-manual binary tumor segmentation. 2528 radiomic features were extracted from T1w (± contrast), FLAIR, and wavelet transforms for each sequence (eight decompositions). Random forest classifiers were trained with selected features on original and oversampled data (five-fold cross-validation) and evaluated on internal/external holdout test sets using accuracy, precision, recall, F1-score, and AUC.\n \n \n \n Oversampling did not improve the overall unsatisfactory performance on the internal and external test sets. Incorrect data partitioning (oversampling before train/validation/test split) lead to a massive overestimation of model performance.\n \n \n \n Radiomics models' capability to predict histologic or genomic data from imaging should be critically assessed; external validation is essential.\n","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limited Capability of MRI Radiomics to Predict Primary Tumor Histology of Brain Metastases in External Validation\",\"authors\":\"Quirin D. Strotzer, Thomas Wagner, Pia Angstwurm, K. Hense, Lucca Scheuermeyer, E. Noeva, Johannes Dinkel, Christian Stroszczynski, Claudia Fellner, M. Riemenschneider, K. Rosengarth, T. Pukrop, Isabel Wiesinger, Christina Wendl, A. Schicho\",\"doi\":\"10.1093/noajnl/vdae060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n Growing research demonstrates the ability to predict histology or genetic information of various malignancies using radiomic features extracted from imaging data. This study aimed to investigate MRI-based radiomics in predicting the primary tumor of brain metastases through internal and external validation, using oversampling techniques to address class imbalance.\\n \\n \\n \\n This IRB-approved retrospective multicenter study included brain metastases from lung cancer, melanoma, breast cancer, colorectal cancer, and a combined heterogenous group of other primary entities (five-class classification). Local data were acquired between 2003 and 2021 from 231 patients (545 metastases). External validation was performed with 82 patients (280 metastases) and 258 patients (809 metastases) from the publicly available Stanford BrainMetShare and the University of California San Francisco Brain Metastases Stereotactic Radiosurgery datasets, respectively. Pre-processing included brain extraction, bias correction, co-registration, intensity normalization, and semi-manual binary tumor segmentation. 2528 radiomic features were extracted from T1w (± contrast), FLAIR, and wavelet transforms for each sequence (eight decompositions). Random forest classifiers were trained with selected features on original and oversampled data (five-fold cross-validation) and evaluated on internal/external holdout test sets using accuracy, precision, recall, F1-score, and AUC.\\n \\n \\n \\n Oversampling did not improve the overall unsatisfactory performance on the internal and external test sets. Incorrect data partitioning (oversampling before train/validation/test split) lead to a massive overestimation of model performance.\\n \\n \\n \\n Radiomics models' capability to predict histologic or genomic data from imaging should be critically assessed; external validation is essential.\\n\",\"PeriodicalId\":94157,\"journal\":{\"name\":\"Neuro-oncology advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology advances\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的研究表明,利用从成像数据中提取的放射组学特征可以预测各种恶性肿瘤的组织学或遗传信息。本研究旨在通过内部和外部验证,研究基于核磁共振成像的放射组学在预测脑转移瘤原发肿瘤方面的应用,并利用超采样技术解决类不平衡问题。 这项经 IRB 批准的回顾性多中心研究包括来自肺癌、黑色素瘤、乳腺癌、结直肠癌和其他原发实体(五级分类)的综合异质组的脑转移瘤。231 名患者(545 例转移瘤)的本地数据采集于 2003 年至 2021 年。外部验证分别使用公开的斯坦福脑转移数据集(BrainMetShare)和加州大学旧金山分校脑转移立体定向放射手术数据集的82名患者(280个转移灶)和258名患者(809个转移灶)。预处理包括脑提取、偏差校正、共定标、强度归一化和半人工二元肿瘤分割。从每个序列的 T1w(±对比度)、FLAIR 和小波变换(八种分解)中提取了 2528 个放射学特征。随机森林分类器在原始数据和过采样数据(五倍交叉验证)上使用所选特征进行训练,并在内部/外部保留测试集上使用准确度、精确度、召回率、F1-分数和AUC进行评估。 在内部和外部测试集上,过度采样并没有改善不尽人意的整体性能。不正确的数据分区(训练/验证/测试分离前的过度采样)导致模型性能被严重高估。 应严格评估放射组学模型从成像中预测组织学或基因组数据的能力;外部验证至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limited Capability of MRI Radiomics to Predict Primary Tumor Histology of Brain Metastases in External Validation
Growing research demonstrates the ability to predict histology or genetic information of various malignancies using radiomic features extracted from imaging data. This study aimed to investigate MRI-based radiomics in predicting the primary tumor of brain metastases through internal and external validation, using oversampling techniques to address class imbalance. This IRB-approved retrospective multicenter study included brain metastases from lung cancer, melanoma, breast cancer, colorectal cancer, and a combined heterogenous group of other primary entities (five-class classification). Local data were acquired between 2003 and 2021 from 231 patients (545 metastases). External validation was performed with 82 patients (280 metastases) and 258 patients (809 metastases) from the publicly available Stanford BrainMetShare and the University of California San Francisco Brain Metastases Stereotactic Radiosurgery datasets, respectively. Pre-processing included brain extraction, bias correction, co-registration, intensity normalization, and semi-manual binary tumor segmentation. 2528 radiomic features were extracted from T1w (± contrast), FLAIR, and wavelet transforms for each sequence (eight decompositions). Random forest classifiers were trained with selected features on original and oversampled data (five-fold cross-validation) and evaluated on internal/external holdout test sets using accuracy, precision, recall, F1-score, and AUC. Oversampling did not improve the overall unsatisfactory performance on the internal and external test sets. Incorrect data partitioning (oversampling before train/validation/test split) lead to a massive overestimation of model performance. Radiomics models' capability to predict histologic or genomic data from imaging should be critically assessed; external validation is essential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信