细长体在冰层下做不稳定运动时的波浪阻力

A. Pogorelova, V. Zemlyak, V. Kozin
{"title":"细长体在冰层下做不稳定运动时的波浪阻力","authors":"A. Pogorelova, V. Zemlyak, V. Kozin","doi":"10.59887/2073-6673.2024.17(1)-6","DOIUrl":null,"url":null,"abstract":"   The paper is devoted to the theoretical study of the rectilinear unsteady movement of a slender body in a liquid near the free surface and an ice sheet. Water is an ideal incompressible liquid, and the motion of the liquid is potential. The ice cover is modeled by a floating viscoelastic plate. The viscoelastic properties of ice are described using the Kelvin–Voigt model. A slender body of a given shape in the liquid flow is modeled by the flow of the source-sink system. Various modes of body movement are considered: acceleration, deceleration, movement at a given speed. The effect of the ice sheet, acceleration and deceleration of the body on its wave resistance is analyzed. It is obtained that unsteady modes of motion (acceleration and deceleration) significantly affect the wave resistance of a slender body. Motion with low initial acceleration makes it possible to reduce amplitude of the first-time hump of wave resistance. During body deceleration to a full stop, the curve of wave resistance has an oscillations. Reduction of deceleration coefficient results in decrease of oscillation amplitude of wave resistance curve. The presence of the ice cover smoothes the hump of wave resistance during acceleration and reduces the number of oscillations and their amplitude during deceleration.","PeriodicalId":218146,"journal":{"name":"Fundamental and Applied Hydrophysics","volume":"103 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave resistance of slender body in unsteady motion under an ice sheet\",\"authors\":\"A. Pogorelova, V. Zemlyak, V. Kozin\",\"doi\":\"10.59887/2073-6673.2024.17(1)-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"   The paper is devoted to the theoretical study of the rectilinear unsteady movement of a slender body in a liquid near the free surface and an ice sheet. Water is an ideal incompressible liquid, and the motion of the liquid is potential. The ice cover is modeled by a floating viscoelastic plate. The viscoelastic properties of ice are described using the Kelvin–Voigt model. A slender body of a given shape in the liquid flow is modeled by the flow of the source-sink system. Various modes of body movement are considered: acceleration, deceleration, movement at a given speed. The effect of the ice sheet, acceleration and deceleration of the body on its wave resistance is analyzed. It is obtained that unsteady modes of motion (acceleration and deceleration) significantly affect the wave resistance of a slender body. Motion with low initial acceleration makes it possible to reduce amplitude of the first-time hump of wave resistance. During body deceleration to a full stop, the curve of wave resistance has an oscillations. Reduction of deceleration coefficient results in decrease of oscillation amplitude of wave resistance curve. The presence of the ice cover smoothes the hump of wave resistance during acceleration and reduces the number of oscillations and their amplitude during deceleration.\",\"PeriodicalId\":218146,\"journal\":{\"name\":\"Fundamental and Applied Hydrophysics\",\"volume\":\"103 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental and Applied Hydrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59887/2073-6673.2024.17(1)-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental and Applied Hydrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59887/2073-6673.2024.17(1)-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要对液体中的细长体在自由表面和冰层附近的直线非稳态运动进行理论研究。水是理想的不可压缩液体,液体的运动是潜在的。冰盖由浮动粘弹性板模拟。冰的粘弹性是通过开尔文-伏依格特模型来描述的。液流中的给定形状的细长体由源-沉系统流建模。考虑了物体运动的各种模式:加速、减速、以给定速度运动。分析了冰层、物体的加速度和减速度对其波阻抗的影响。结果表明,不稳定的运动模式(加速和减速)对细长体的抗波性有很大影响。低初始加速度运动可以减小首次波浪阻力驼峰的振幅。在身体减速到完全停止时,波浪阻力曲线会出现振荡。减速系数的减小会导致波阻曲线振荡幅度的减小。冰盖的存在使加速时的波浪阻力驼峰变得平滑,并减少了减速时的振荡次数和振荡幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave resistance of slender body in unsteady motion under an ice sheet
   The paper is devoted to the theoretical study of the rectilinear unsteady movement of a slender body in a liquid near the free surface and an ice sheet. Water is an ideal incompressible liquid, and the motion of the liquid is potential. The ice cover is modeled by a floating viscoelastic plate. The viscoelastic properties of ice are described using the Kelvin–Voigt model. A slender body of a given shape in the liquid flow is modeled by the flow of the source-sink system. Various modes of body movement are considered: acceleration, deceleration, movement at a given speed. The effect of the ice sheet, acceleration and deceleration of the body on its wave resistance is analyzed. It is obtained that unsteady modes of motion (acceleration and deceleration) significantly affect the wave resistance of a slender body. Motion with low initial acceleration makes it possible to reduce amplitude of the first-time hump of wave resistance. During body deceleration to a full stop, the curve of wave resistance has an oscillations. Reduction of deceleration coefficient results in decrease of oscillation amplitude of wave resistance curve. The presence of the ice cover smoothes the hump of wave resistance during acceleration and reduces the number of oscillations and their amplitude during deceleration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信