通过 Co9S8 碳杂化物中的强相互作用增强离子吸附能力,实现卓越的钠离子储存效果

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Xinyi Ma, Xiaoyue He, Lai Yu, Nazir Ahmad, Zongzhi Tao, Zi Xuan Jiang, Jia Cheng Liang, Prof. Suyuan Zeng, Prof. Liang Shi, Prof. Genqiang Zhang
{"title":"通过 Co9S8 碳杂化物中的强相互作用增强离子吸附能力,实现卓越的钠离子储存效果","authors":"Xinyi Ma,&nbsp;Xiaoyue He,&nbsp;Lai Yu,&nbsp;Nazir Ahmad,&nbsp;Zongzhi Tao,&nbsp;Zi Xuan Jiang,&nbsp;Jia Cheng Liang,&nbsp;Prof. Suyuan Zeng,&nbsp;Prof. Liang Shi,&nbsp;Prof. Genqiang Zhang","doi":"10.1002/batt.202400170","DOIUrl":null,"url":null,"abstract":"<p>Metal sulfides materials are promising anode candidates for Na<sup>+</sup> storage due to their low cost and high theoretical capacity, while the complex phase transition and inevitable volume expansion during cycling restrain their practical applications. Herein, a simple one-pot manipulation strategy was designed to construct Co<sub>9</sub>S<sub>8</sub> nanoparticles strongly encapsulated in carbon nanotubes (Co<sub>9</sub>S<sub>8</sub>@C/NTs) composite structure with enhanced structural stability and reaction kinetics, resulting in greatly improved Na<sup>+</sup> storage performance. Specifically, the obtained Co<sub>9</sub>S<sub>8</sub>@C/NTs could exhibit a remarkable capacity of 500 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> after 100 cycles and exceptional cycling stability over 600 cycles with 88 % capacity retention at 1 A g<sup>−1</sup>. Furthermore, the theoretical calculations combined with systematic characterizations confirm that the strong interaction between Co<sub>9</sub>S<sub>8</sub> and the carbon matrix could greatly enhance the Na<sup>+</sup> adsorption ability and facilitate the electron transfer dynamics for superior Na<sup>+</sup> storage capability. More importantly, the full cell device can deliver an outstanding energy density of 144.32 Wh kg<sup>−1</sup> and a decent cycling life with 82 % capacity retention of almost 100 cycles at 0.1 A g<sup>−1</sup>. This work could provide more valuable insights for designing advanced metal sulfide nanocomposites and demonstrate fascinating prospects for commercial application.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Ion Adsorption Capability through the Strong Interaction in Co9S8-Carbon Hybrids Achieves Superior Sodium Ion Storage\",\"authors\":\"Xinyi Ma,&nbsp;Xiaoyue He,&nbsp;Lai Yu,&nbsp;Nazir Ahmad,&nbsp;Zongzhi Tao,&nbsp;Zi Xuan Jiang,&nbsp;Jia Cheng Liang,&nbsp;Prof. Suyuan Zeng,&nbsp;Prof. Liang Shi,&nbsp;Prof. Genqiang Zhang\",\"doi\":\"10.1002/batt.202400170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal sulfides materials are promising anode candidates for Na<sup>+</sup> storage due to their low cost and high theoretical capacity, while the complex phase transition and inevitable volume expansion during cycling restrain their practical applications. Herein, a simple one-pot manipulation strategy was designed to construct Co<sub>9</sub>S<sub>8</sub> nanoparticles strongly encapsulated in carbon nanotubes (Co<sub>9</sub>S<sub>8</sub>@C/NTs) composite structure with enhanced structural stability and reaction kinetics, resulting in greatly improved Na<sup>+</sup> storage performance. Specifically, the obtained Co<sub>9</sub>S<sub>8</sub>@C/NTs could exhibit a remarkable capacity of 500 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> after 100 cycles and exceptional cycling stability over 600 cycles with 88 % capacity retention at 1 A g<sup>−1</sup>. Furthermore, the theoretical calculations combined with systematic characterizations confirm that the strong interaction between Co<sub>9</sub>S<sub>8</sub> and the carbon matrix could greatly enhance the Na<sup>+</sup> adsorption ability and facilitate the electron transfer dynamics for superior Na<sup>+</sup> storage capability. More importantly, the full cell device can deliver an outstanding energy density of 144.32 Wh kg<sup>−1</sup> and a decent cycling life with 82 % capacity retention of almost 100 cycles at 0.1 A g<sup>−1</sup>. This work could provide more valuable insights for designing advanced metal sulfide nanocomposites and demonstrate fascinating prospects for commercial application.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400170\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400170","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

金属硫化物材料因其低成本和高理论容量而成为具有潜力的 Na+ 储存阳极候选材料,但其复杂的相变和循环过程中不可避免的体积膨胀限制了其实际应用。本文设计了一种简单的一锅操作策略,构建了Co9S8纳米颗粒强包覆碳纳米管(Co9S8@C/NTs)复合结构,增强了结构稳定性和反应动力学,从而大大提高了Na+存储性能。具体而言,所获得的 Co9S8@C/NTs 在 0.5 A g-1 条件下循环 100 次后,容量可达 500 mAh g-1;在 1 A g-1 条件下循环 600 次后,容量保持率为 88%,具有优异的循环稳定性。此外,理论计算结合系统表征证实,Co9S8 与碳基质之间的强相互作用可大大提高 Na+ 的吸附能力,并促进电子传递动力学,从而实现卓越的 Na+ 储存能力。更重要的是,这种全电池器件的能量密度高达 144.32 Wh kg-1,循环寿命长,在 0.1 A g-1 的条件下可循环 100 次,容量保持率高达 82%。这项工作可为设计先进的金属硫化物纳米复合材料提供更多灵感,并展示出令人着迷的商业应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Ion Adsorption Capability through the Strong Interaction in Co9S8-Carbon Hybrids Achieves Superior Sodium Ion Storage

Enhancing Ion Adsorption Capability through the Strong Interaction in Co9S8-Carbon Hybrids Achieves Superior Sodium Ion Storage

Metal sulfides materials are promising anode candidates for Na+ storage due to their low cost and high theoretical capacity, while the complex phase transition and inevitable volume expansion during cycling restrain their practical applications. Herein, a simple one-pot manipulation strategy was designed to construct Co9S8 nanoparticles strongly encapsulated in carbon nanotubes (Co9S8@C/NTs) composite structure with enhanced structural stability and reaction kinetics, resulting in greatly improved Na+ storage performance. Specifically, the obtained Co9S8@C/NTs could exhibit a remarkable capacity of 500 mAh g−1 at 0.5 A g−1 after 100 cycles and exceptional cycling stability over 600 cycles with 88 % capacity retention at 1 A g−1. Furthermore, the theoretical calculations combined with systematic characterizations confirm that the strong interaction between Co9S8 and the carbon matrix could greatly enhance the Na+ adsorption ability and facilitate the electron transfer dynamics for superior Na+ storage capability. More importantly, the full cell device can deliver an outstanding energy density of 144.32 Wh kg−1 and a decent cycling life with 82 % capacity retention of almost 100 cycles at 0.1 A g−1. This work could provide more valuable insights for designing advanced metal sulfide nanocomposites and demonstrate fascinating prospects for commercial application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信