硅光子神经网络的射频线性分析与优化

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eric C. Blow, Simon Bilodeau, Weipeng Zhang, Thomas Ferreira de Lima, Joshua C. Lederman, Bhavin Shastri, Paul R. Prucnal
{"title":"硅光子神经网络的射频线性分析与优化","authors":"Eric C. Blow,&nbsp;Simon Bilodeau,&nbsp;Weipeng Zhang,&nbsp;Thomas Ferreira de Lima,&nbsp;Joshua C. Lederman,&nbsp;Bhavin Shastri,&nbsp;Paul R. Prucnal","doi":"10.1002/adpr.202300306","DOIUrl":null,"url":null,"abstract":"<p>Broadband analog signal processors utilizing silicon photonics have demonstrated a significant impact in numerous application spaces, offering unprecedented bandwidths, dynamic range, and tunability. In the past decade, microwave photonic techniques have been applied to neuromorphic processing, resulting in the development of novel photonic neural network architectures. Neuromorphic photonic systems can enable machine learning capabilities at extreme bandwidths and speeds. Herein, low-quality factor microring resonators are implemented to demonstrate broadband optical weighting. In addition, silicon photonic neural network architectures are critically evaluated, simulated, and optimized from a radio-frequency performance perspective. This analysis highlights the linear front-end of the photonic neural network, the effects of linear and nonlinear loss within silicon waveguides, and the impact of electrical preamplification.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300306","citationCount":"0","resultStr":"{\"title\":\"Radio-Frequency Linear Analysis and Optimization of Silicon Photonic Neural Networks\",\"authors\":\"Eric C. Blow,&nbsp;Simon Bilodeau,&nbsp;Weipeng Zhang,&nbsp;Thomas Ferreira de Lima,&nbsp;Joshua C. Lederman,&nbsp;Bhavin Shastri,&nbsp;Paul R. Prucnal\",\"doi\":\"10.1002/adpr.202300306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Broadband analog signal processors utilizing silicon photonics have demonstrated a significant impact in numerous application spaces, offering unprecedented bandwidths, dynamic range, and tunability. In the past decade, microwave photonic techniques have been applied to neuromorphic processing, resulting in the development of novel photonic neural network architectures. Neuromorphic photonic systems can enable machine learning capabilities at extreme bandwidths and speeds. Herein, low-quality factor microring resonators are implemented to demonstrate broadband optical weighting. In addition, silicon photonic neural network architectures are critically evaluated, simulated, and optimized from a radio-frequency performance perspective. This analysis highlights the linear front-end of the photonic neural network, the effects of linear and nonlinear loss within silicon waveguides, and the impact of electrical preamplification.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300306\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用硅光子技术的宽带模拟信号处理器已在众多应用领域产生了重大影响,提供了前所未有的带宽、动态范围和可调性。在过去十年中,微波光子技术被应用于神经形态处理,从而开发出新型光子神经网络架构。神经形态光子系统能以极高的带宽和速度实现机器学习功能。在这里,低质量因子微oring谐振器被用来演示宽带光学加权。此外,还从射频性能的角度对硅光子神经网络架构进行了严格的评估、模拟和优化。该分析强调了光子神经网络的线性前端、硅波导内线性和非线性损耗的影响以及电子前置放大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radio-Frequency Linear Analysis and Optimization of Silicon Photonic Neural Networks

Radio-Frequency Linear Analysis and Optimization of Silicon Photonic Neural Networks

Broadband analog signal processors utilizing silicon photonics have demonstrated a significant impact in numerous application spaces, offering unprecedented bandwidths, dynamic range, and tunability. In the past decade, microwave photonic techniques have been applied to neuromorphic processing, resulting in the development of novel photonic neural network architectures. Neuromorphic photonic systems can enable machine learning capabilities at extreme bandwidths and speeds. Herein, low-quality factor microring resonators are implemented to demonstrate broadband optical weighting. In addition, silicon photonic neural network architectures are critically evaluated, simulated, and optimized from a radio-frequency performance perspective. This analysis highlights the linear front-end of the photonic neural network, the effects of linear and nonlinear loss within silicon waveguides, and the impact of electrical preamplification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信