{"title":"利用约束高斯过程建立材料系统的非线性响应模型","authors":"Sumudu Herath, Souvik Chakraborty","doi":"10.1002/nme.7486","DOIUrl":null,"url":null,"abstract":"<p>This article investigates the suitability of constrained Gaussian process regression in predicting nonlinear mechanical responses of material systems with notably reduced uncertainties. This study reinforces the conventional Gaussian processes with mechanics-informed prior knowledge observed in various kinematic responses. Stiffening and softening responses of material systems mostly demonstrate at least one of the boundedness, monotonicity and convexity conditions with respect to some kinematic variables. These relationships or impositions in turn are encoded into a constrained Gaussian process for prediction, uncertainty quantification and extrapolation. Using numerous examples and comparative studies, this article evidently proves that the use of constrained Gaussian processes is data-efficient, highly accurate, yields low uncertainties, recovers model overfitting and extrapolates very well compared to unconstrained or conventional Gaussian processes. Moreover, the usability of the proposed numerical method across various engineering modelling domains such as multiscale homogenisation, experimentation, structural optimisation, material constitutive modelling and structural idealisation is demonstrated.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"125 14","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear response modelling of material systems using constrained Gaussian processes\",\"authors\":\"Sumudu Herath, Souvik Chakraborty\",\"doi\":\"10.1002/nme.7486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article investigates the suitability of constrained Gaussian process regression in predicting nonlinear mechanical responses of material systems with notably reduced uncertainties. This study reinforces the conventional Gaussian processes with mechanics-informed prior knowledge observed in various kinematic responses. Stiffening and softening responses of material systems mostly demonstrate at least one of the boundedness, monotonicity and convexity conditions with respect to some kinematic variables. These relationships or impositions in turn are encoded into a constrained Gaussian process for prediction, uncertainty quantification and extrapolation. Using numerous examples and comparative studies, this article evidently proves that the use of constrained Gaussian processes is data-efficient, highly accurate, yields low uncertainties, recovers model overfitting and extrapolates very well compared to unconstrained or conventional Gaussian processes. Moreover, the usability of the proposed numerical method across various engineering modelling domains such as multiscale homogenisation, experimentation, structural optimisation, material constitutive modelling and structural idealisation is demonstrated.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"125 14\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7486\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7486","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlinear response modelling of material systems using constrained Gaussian processes
This article investigates the suitability of constrained Gaussian process regression in predicting nonlinear mechanical responses of material systems with notably reduced uncertainties. This study reinforces the conventional Gaussian processes with mechanics-informed prior knowledge observed in various kinematic responses. Stiffening and softening responses of material systems mostly demonstrate at least one of the boundedness, monotonicity and convexity conditions with respect to some kinematic variables. These relationships or impositions in turn are encoded into a constrained Gaussian process for prediction, uncertainty quantification and extrapolation. Using numerous examples and comparative studies, this article evidently proves that the use of constrained Gaussian processes is data-efficient, highly accurate, yields low uncertainties, recovers model overfitting and extrapolates very well compared to unconstrained or conventional Gaussian processes. Moreover, the usability of the proposed numerical method across various engineering modelling domains such as multiscale homogenisation, experimentation, structural optimisation, material constitutive modelling and structural idealisation is demonstrated.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.