普通小麦研究中对禾谷镰刀菌致病因子基本认识的最新进展

Plants Pub Date : 2024-04-22 DOI:10.3390/plants13081159
Zeeshan Ali Buttar, Mengquan Cheng, Panqin Wei, Ziwei Zhang, Chunlei Lv, Chenjia Zhu, Nida Fatima Ali, Guozhang Kang, Daowen Wang, Kunpu Zhang
{"title":"普通小麦研究中对禾谷镰刀菌致病因子基本认识的最新进展","authors":"Zeeshan Ali Buttar, Mengquan Cheng, Panqin Wei, Ziwei Zhang, Chunlei Lv, Chenjia Zhu, Nida Fatima Ali, Guozhang Kang, Daowen Wang, Kunpu Zhang","doi":"10.3390/plants13081159","DOIUrl":null,"url":null,"abstract":"Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"91 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research\",\"authors\":\"Zeeshan Ali Buttar, Mengquan Cheng, Panqin Wei, Ziwei Zhang, Chunlei Lv, Chenjia Zhu, Nida Fatima Ali, Guozhang Kang, Daowen Wang, Kunpu Zhang\",\"doi\":\"10.3390/plants13081159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.\",\"PeriodicalId\":509472,\"journal\":{\"name\":\"Plants\",\"volume\":\"91 27\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/plants13081159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/plants13081159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小麦是中国和世界上最重要的粮食作物之一。小麦生产正面临着不同病害带来的极端压力,其中镰刀菌头枯病(FHB)近来已成为一个日益严重的问题。FHB 是影响全世界小麦作物的最重要和最具破坏性的病害之一。基因组工具的最新进展为研究与寄主植物相关的致病因子提供了一条新途径。本综述侧重于研究镰刀菌感染不同菌株的最新进展。全基因组重复诱导点突变(RIP)的存在会引起基因组突变,最终导致寄主植物易受镰刀菌侵染。此外,效应蛋白还会破坏寄主植物的抗病机制。在这项研究中,我们提出了利用现代生物工具对寄主基因组进行系统改造,以促进植物抵御外来入侵的方法。我们还提出了一系列科学策略,如基因克隆、开发更强大的功能标记、使用单体型标记辅助选择等,以进一步提高 FHB 的抗性和相关育种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信