北半球对流层顶压力水平 (TPLs) 的时空变化

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Hossein Asakereh, Soma Zandkarimi
{"title":"北半球对流层顶压力水平 (TPLs) 的时空变化","authors":"Hossein Asakereh,&nbsp;Soma Zandkarimi","doi":"10.1007/s00024-024-03484-2","DOIUrl":null,"url":null,"abstract":"<div><p>The tropopause serves a critical role in shaping global and regional weather and climate dynamics. Changes in tropopause characteristics can significantly impact other atmospheric components, thereby influencing Earth’s climate systems. In the long run, variations in tropopause features can lead to shifts in the thermal, dynamic, and chemical properties of the tropospheric layer. This study aims to investigate the descriptive attributes of tropopause pressure levels (TPLs) during different months, as well as the temporal and spatial trends in TPL across the Northern Hemisphere spanning from 1979 to 2022. Utilizing ERA5 temperature data for the 700 to 50 hPa range, the tropopause was identified using the lapse rate of tropopause (LRT), and its changes were analyzed employing the linear regression model with the least squares error approach. The results indicated that the spatial pattern of TPLs changed across various latitudes varies seasonally. Generally, the changes in TPLs did not exhibit a linear relationship with latitude, and in most observed months, the highest and lowest TPLs did not correspond to the lowest and highest latitudes, respectively. Examination of the trend in TPLs revealed that in numerous significant areas across different seasons, the trends were statistically insignificant. Where significant, the trends predominantly indicated negative changes (decreases), suggesting a reduction in pressure and potentially an increase in tropopause altitude in these regions, possibly reflecting the influence of global warming.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 5","pages":"1617 - 1632"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and Spatial Variations in Tropopause Pressure Levels (TPLs) Across the Northern Hemisphere\",\"authors\":\"Hossein Asakereh,&nbsp;Soma Zandkarimi\",\"doi\":\"10.1007/s00024-024-03484-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The tropopause serves a critical role in shaping global and regional weather and climate dynamics. Changes in tropopause characteristics can significantly impact other atmospheric components, thereby influencing Earth’s climate systems. In the long run, variations in tropopause features can lead to shifts in the thermal, dynamic, and chemical properties of the tropospheric layer. This study aims to investigate the descriptive attributes of tropopause pressure levels (TPLs) during different months, as well as the temporal and spatial trends in TPL across the Northern Hemisphere spanning from 1979 to 2022. Utilizing ERA5 temperature data for the 700 to 50 hPa range, the tropopause was identified using the lapse rate of tropopause (LRT), and its changes were analyzed employing the linear regression model with the least squares error approach. The results indicated that the spatial pattern of TPLs changed across various latitudes varies seasonally. Generally, the changes in TPLs did not exhibit a linear relationship with latitude, and in most observed months, the highest and lowest TPLs did not correspond to the lowest and highest latitudes, respectively. Examination of the trend in TPLs revealed that in numerous significant areas across different seasons, the trends were statistically insignificant. Where significant, the trends predominantly indicated negative changes (decreases), suggesting a reduction in pressure and potentially an increase in tropopause altitude in these regions, possibly reflecting the influence of global warming.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"181 5\",\"pages\":\"1617 - 1632\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-024-03484-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03484-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对流层顶在形成全球和区域天气和气候动力学方面发挥着至关重要的作用。对流层顶特征的变化会对其他大气成分产生重大影响,从而影响地球的气候系统。从长远来看,对流层顶特征的变化会导致对流层的热、动力和化学特性发生变化。本研究旨在调查不同月份对流层顶压力水平(TPLs)的描述属性,以及从 1979 年到 2022 年北半球对流层顶压力水平的时空变化趋势。利用ERA5中700至50 hPa范围的温度数据,采用对流层顶失效率(LRT)识别对流层顶,并采用最小二乘误差线性回归模型分析其变化。结果表明,对流层顶在不同纬度的空间变化规律随季节而变化。一般来说,TPLs 的变化与纬度并不呈线性关系,在大多数观测月份中,TPLs 的最高值和最低值并不分别对应于纬度的最低值和最高值。对 TPLs 趋势的研究表明,在不同季节的许多重要地区,其趋势在统计上并不显著。在有意义的地区,趋势主要是负向变化(下降),表明这些地区的气压降低,对流层顶高度可能升高,这可能反映了全球变暖的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temporal and Spatial Variations in Tropopause Pressure Levels (TPLs) Across the Northern Hemisphere

Temporal and Spatial Variations in Tropopause Pressure Levels (TPLs) Across the Northern Hemisphere

The tropopause serves a critical role in shaping global and regional weather and climate dynamics. Changes in tropopause characteristics can significantly impact other atmospheric components, thereby influencing Earth’s climate systems. In the long run, variations in tropopause features can lead to shifts in the thermal, dynamic, and chemical properties of the tropospheric layer. This study aims to investigate the descriptive attributes of tropopause pressure levels (TPLs) during different months, as well as the temporal and spatial trends in TPL across the Northern Hemisphere spanning from 1979 to 2022. Utilizing ERA5 temperature data for the 700 to 50 hPa range, the tropopause was identified using the lapse rate of tropopause (LRT), and its changes were analyzed employing the linear regression model with the least squares error approach. The results indicated that the spatial pattern of TPLs changed across various latitudes varies seasonally. Generally, the changes in TPLs did not exhibit a linear relationship with latitude, and in most observed months, the highest and lowest TPLs did not correspond to the lowest and highest latitudes, respectively. Examination of the trend in TPLs revealed that in numerous significant areas across different seasons, the trends were statistically insignificant. Where significant, the trends predominantly indicated negative changes (decreases), suggesting a reduction in pressure and potentially an increase in tropopause altitude in these regions, possibly reflecting the influence of global warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信