M. Nguyen, N. Laraqi, J. Bauzin, Mehdi-Belkacem Cherikh, Ali Hocine, Zsolt Péter
{"title":"高斯移动热源加热固体的热行为","authors":"M. Nguyen, N. Laraqi, J. Bauzin, Mehdi-Belkacem Cherikh, Ali Hocine, Zsolt Péter","doi":"10.2514/1.t6953","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical development is proposed to explicitly calculate the three-dimensional and transient temperature of a solid heated by a Gaussian moving heat source. The moving source dissipates heat in a thin layer near the irradiated surface of the solid and can be constant or pulsed or have any time evolution, depending on the application. The resulting solution requires only one convergent integral over time, which can be quickly computed numerically using, for example, a commercial formal calculation software. On the other hand, the derivative of the temperature with respect to time is fully explicit. We show that the results of the developed analytical solution are in excellent agreement with those of a numerical modeling that we performed under the same conditions. The temperature evolutions and the thermal maps are presented and commented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"75 20","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Behavior of Solid Heated by Gaussian Moving Heat Source\",\"authors\":\"M. Nguyen, N. Laraqi, J. Bauzin, Mehdi-Belkacem Cherikh, Ali Hocine, Zsolt Péter\",\"doi\":\"10.2514/1.t6953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an analytical development is proposed to explicitly calculate the three-dimensional and transient temperature of a solid heated by a Gaussian moving heat source. The moving source dissipates heat in a thin layer near the irradiated surface of the solid and can be constant or pulsed or have any time evolution, depending on the application. The resulting solution requires only one convergent integral over time, which can be quickly computed numerically using, for example, a commercial formal calculation software. On the other hand, the derivative of the temperature with respect to time is fully explicit. We show that the results of the developed analytical solution are in excellent agreement with those of a numerical modeling that we performed under the same conditions. The temperature evolutions and the thermal maps are presented and commented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"75 20\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6953\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal Behavior of Solid Heated by Gaussian Moving Heat Source
In this paper, an analytical development is proposed to explicitly calculate the three-dimensional and transient temperature of a solid heated by a Gaussian moving heat source. The moving source dissipates heat in a thin layer near the irradiated surface of the solid and can be constant or pulsed or have any time evolution, depending on the application. The resulting solution requires only one convergent integral over time, which can be quickly computed numerically using, for example, a commercial formal calculation software. On the other hand, the derivative of the temperature with respect to time is fully explicit. We show that the results of the developed analytical solution are in excellent agreement with those of a numerical modeling that we performed under the same conditions. The temperature evolutions and the thermal maps are presented and commented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.