Xiaocun Liao, Chao Zhou, Long Cheng, Jian Wang, J. Fan, Zhuoliang Zhang
{"title":"基于弹性脊柱的鱼类快速在线刚性调节机制","authors":"Xiaocun Liao, Chao Zhou, Long Cheng, Jian Wang, J. Fan, Zhuoliang Zhang","doi":"10.1089/soro.2023.0204","DOIUrl":null,"url":null,"abstract":"Fish tunes fishtail stiffness by coordinating its tendons, muscles, and other tissues to improve swimming performance. For robotic fish, achieving a fast and online fishlike stiffness adjustment over a large-scale range is of great significance for performance improvement. This article proposes an elastic-spine-based variable stiffness robotic fish, which adopts spring steel to emulate the fish spine, and its stiffness is adjusted by tuning the effective length of the elastic spine. The stiffness can be switched in the maximum adjustable range within 0.26 s. To optimize the motion performance of robotic fish by adjusting fishtail stiffness, a Kane-based dynamic model is proposed, based on which the stiffness adjustment strategy for multistage swimming is constructed. Simulations and experiments are conducted, including performance measurements and analyses in terms of swimming speed, thrust, and so on, and online stiffness adjustment-based multistage swimming, which verifies the feasibility of the proposed variable stiffness robotic fish. The maximum speed and lowest cost of transport for robotic fish are 0.43 m/s (equivalent to 0.81 BL/s) and 7.14 J/(kg·m), respectively.","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Online Elastic-Spine-Based Stiffness Adjusting Mechanism for Fishlike Swimming.\",\"authors\":\"Xiaocun Liao, Chao Zhou, Long Cheng, Jian Wang, J. Fan, Zhuoliang Zhang\",\"doi\":\"10.1089/soro.2023.0204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fish tunes fishtail stiffness by coordinating its tendons, muscles, and other tissues to improve swimming performance. For robotic fish, achieving a fast and online fishlike stiffness adjustment over a large-scale range is of great significance for performance improvement. This article proposes an elastic-spine-based variable stiffness robotic fish, which adopts spring steel to emulate the fish spine, and its stiffness is adjusted by tuning the effective length of the elastic spine. The stiffness can be switched in the maximum adjustable range within 0.26 s. To optimize the motion performance of robotic fish by adjusting fishtail stiffness, a Kane-based dynamic model is proposed, based on which the stiffness adjustment strategy for multistage swimming is constructed. Simulations and experiments are conducted, including performance measurements and analyses in terms of swimming speed, thrust, and so on, and online stiffness adjustment-based multistage swimming, which verifies the feasibility of the proposed variable stiffness robotic fish. The maximum speed and lowest cost of transport for robotic fish are 0.43 m/s (equivalent to 0.81 BL/s) and 7.14 J/(kg·m), respectively.\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0204\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2023.0204","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
A Fast Online Elastic-Spine-Based Stiffness Adjusting Mechanism for Fishlike Swimming.
Fish tunes fishtail stiffness by coordinating its tendons, muscles, and other tissues to improve swimming performance. For robotic fish, achieving a fast and online fishlike stiffness adjustment over a large-scale range is of great significance for performance improvement. This article proposes an elastic-spine-based variable stiffness robotic fish, which adopts spring steel to emulate the fish spine, and its stiffness is adjusted by tuning the effective length of the elastic spine. The stiffness can be switched in the maximum adjustable range within 0.26 s. To optimize the motion performance of robotic fish by adjusting fishtail stiffness, a Kane-based dynamic model is proposed, based on which the stiffness adjustment strategy for multistage swimming is constructed. Simulations and experiments are conducted, including performance measurements and analyses in terms of swimming speed, thrust, and so on, and online stiffness adjustment-based multistage swimming, which verifies the feasibility of the proposed variable stiffness robotic fish. The maximum speed and lowest cost of transport for robotic fish are 0.43 m/s (equivalent to 0.81 BL/s) and 7.14 J/(kg·m), respectively.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.