Idamaria Romakkaniemi, J. Ahola, Johanna Panula-Perälä, Marja Mikola, Juuso Pyörälä, J. Tanskanen
{"title":"用工业相关溶剂对工业木质素材料进行溶剂分馏","authors":"Idamaria Romakkaniemi, J. Ahola, Johanna Panula-Perälä, Marja Mikola, Juuso Pyörälä, J. Tanskanen","doi":"10.3311/ppch.23117","DOIUrl":null,"url":null,"abstract":"Lignin fractionation aims at dividing the original lignin material into more uniform fractions that have the qualities desired for further processing of the material. Solvent fractionation is a versatile method that produces a soluble and an insoluble fraction with varying compositions, including molecular weight distribution, polydispersity (PDI), and phenolic hydroxyl (OHph) content. These properties are key factors in the further downstream applicability of lignin. Kraft, organosolv, and hydrolysis lignins were fractionated using multiple solvents and their water solutions with a single-stage fractionation protocol. The produced fractions were analyzed for their molecular size distribution and OHph content. Soluble fractions were discovered with desirable qualities, including a narrow size distribution (lowest PDI 1.4) and accumulation of OHph groups (up to 3.05 mmolOH/glignin). Three fractionation solvents, i.e., pure isopropanol, pure ethanol, and 30% γ-valerolactone, were found to produce solvent-specific soluble fractions that had relatively identical characteristic Mw, Mn, and PDI values regardless of the initial lignin material. This is crucially important new data that is beneficial for robust lignin applicability at industrial scale. Other important observations were made regarding water-alcohol solutions, as the increase in initial solid content resulted in changes in the composition of the fractions produced. Further applicability of the obtained fractions is examined in this paper. Patterns as well as differences between the three lignin materials were observed in their dissolution and the resulting compositions of the soluble fractions. This wide comparable dataset of industrially relevant solvents and lignin materials provides significant insight into the possibilities of lignin downstream processing.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent Fractionation of Technical Lignin Materials with Industrially Relevant Solvents\",\"authors\":\"Idamaria Romakkaniemi, J. Ahola, Johanna Panula-Perälä, Marja Mikola, Juuso Pyörälä, J. Tanskanen\",\"doi\":\"10.3311/ppch.23117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lignin fractionation aims at dividing the original lignin material into more uniform fractions that have the qualities desired for further processing of the material. Solvent fractionation is a versatile method that produces a soluble and an insoluble fraction with varying compositions, including molecular weight distribution, polydispersity (PDI), and phenolic hydroxyl (OHph) content. These properties are key factors in the further downstream applicability of lignin. Kraft, organosolv, and hydrolysis lignins were fractionated using multiple solvents and their water solutions with a single-stage fractionation protocol. The produced fractions were analyzed for their molecular size distribution and OHph content. Soluble fractions were discovered with desirable qualities, including a narrow size distribution (lowest PDI 1.4) and accumulation of OHph groups (up to 3.05 mmolOH/glignin). Three fractionation solvents, i.e., pure isopropanol, pure ethanol, and 30% γ-valerolactone, were found to produce solvent-specific soluble fractions that had relatively identical characteristic Mw, Mn, and PDI values regardless of the initial lignin material. This is crucially important new data that is beneficial for robust lignin applicability at industrial scale. Other important observations were made regarding water-alcohol solutions, as the increase in initial solid content resulted in changes in the composition of the fractions produced. Further applicability of the obtained fractions is examined in this paper. Patterns as well as differences between the three lignin materials were observed in their dissolution and the resulting compositions of the soluble fractions. This wide comparable dataset of industrially relevant solvents and lignin materials provides significant insight into the possibilities of lignin downstream processing.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.23117\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.23117","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solvent Fractionation of Technical Lignin Materials with Industrially Relevant Solvents
Lignin fractionation aims at dividing the original lignin material into more uniform fractions that have the qualities desired for further processing of the material. Solvent fractionation is a versatile method that produces a soluble and an insoluble fraction with varying compositions, including molecular weight distribution, polydispersity (PDI), and phenolic hydroxyl (OHph) content. These properties are key factors in the further downstream applicability of lignin. Kraft, organosolv, and hydrolysis lignins were fractionated using multiple solvents and their water solutions with a single-stage fractionation protocol. The produced fractions were analyzed for their molecular size distribution and OHph content. Soluble fractions were discovered with desirable qualities, including a narrow size distribution (lowest PDI 1.4) and accumulation of OHph groups (up to 3.05 mmolOH/glignin). Three fractionation solvents, i.e., pure isopropanol, pure ethanol, and 30% γ-valerolactone, were found to produce solvent-specific soluble fractions that had relatively identical characteristic Mw, Mn, and PDI values regardless of the initial lignin material. This is crucially important new data that is beneficial for robust lignin applicability at industrial scale. Other important observations were made regarding water-alcohol solutions, as the increase in initial solid content resulted in changes in the composition of the fractions produced. Further applicability of the obtained fractions is examined in this paper. Patterns as well as differences between the three lignin materials were observed in their dissolution and the resulting compositions of the soluble fractions. This wide comparable dataset of industrially relevant solvents and lignin materials provides significant insight into the possibilities of lignin downstream processing.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.