PAI-1 转染条件培养基可促进 hBMSCs 的成骨分化。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhang Li, Hou Kegui, Wang Piao, Wang Xuejiu, Ki-Taek Lim, Hexiu Jin
{"title":"PAI-1 转染条件培养基可促进 hBMSCs 的成骨分化。","authors":"Zhang Li,&nbsp;Hou Kegui,&nbsp;Wang Piao,&nbsp;Wang Xuejiu,&nbsp;Ki-Taek Lim,&nbsp;Hexiu Jin","doi":"10.1002/cbin.12166","DOIUrl":null,"url":null,"abstract":"<p>Reconstruction of injured bone remains challenging in the clinic owing to the lack of suitable bone grafts. The utilization of PAI-1 transfected-conditioned media (P-CM) has demonstrated its ability to facilitate the differentiation process of mesenchymal stem cells (MSCs), potentially serving as a crucial mediator in tissue regeneration. This research endeavored to explore the therapeutic potential of P-CM concerning the differentiation of human bone marrow mesenchymal stem cells (hBMSCs). To assess new bone formation, a rat calvaria critical defect model was employed, while in vitro experiments involved the use of the alizarin Red-S mineral induction test. In the rat calvaria critical defect model, P-CM treatment resulted in significan new bone formation. In vitro, P-CM treated hBMSCs displayed robust osteogenesis compared to the control group, as demonstrated by the mineral induction test using alizarin Red-S. P-CM with hydroxyapatite/β-tricalcium phosphate/fibrin gel treatment significantly exhibited new bone formation, and the expression of osteogenic associated markers was enhanced in the P-CM-treated group. In conclusion, results demonstrate that P-CM treatment significantly enhanced the osteogenic differantiation efficiency and new bone formation, thus could be used as an ideal therapeutic biomolecule for constructing bone-specific implants, especially for orthopedic and dental applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PAI-1 transfected-conditioned media promotes osteogenic differentiation of hBMSCs\",\"authors\":\"Zhang Li,&nbsp;Hou Kegui,&nbsp;Wang Piao,&nbsp;Wang Xuejiu,&nbsp;Ki-Taek Lim,&nbsp;Hexiu Jin\",\"doi\":\"10.1002/cbin.12166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconstruction of injured bone remains challenging in the clinic owing to the lack of suitable bone grafts. The utilization of PAI-1 transfected-conditioned media (P-CM) has demonstrated its ability to facilitate the differentiation process of mesenchymal stem cells (MSCs), potentially serving as a crucial mediator in tissue regeneration. This research endeavored to explore the therapeutic potential of P-CM concerning the differentiation of human bone marrow mesenchymal stem cells (hBMSCs). To assess new bone formation, a rat calvaria critical defect model was employed, while in vitro experiments involved the use of the alizarin Red-S mineral induction test. In the rat calvaria critical defect model, P-CM treatment resulted in significan new bone formation. In vitro, P-CM treated hBMSCs displayed robust osteogenesis compared to the control group, as demonstrated by the mineral induction test using alizarin Red-S. P-CM with hydroxyapatite/β-tricalcium phosphate/fibrin gel treatment significantly exhibited new bone formation, and the expression of osteogenic associated markers was enhanced in the P-CM-treated group. In conclusion, results demonstrate that P-CM treatment significantly enhanced the osteogenic differantiation efficiency and new bone formation, thus could be used as an ideal therapeutic biomolecule for constructing bone-specific implants, especially for orthopedic and dental applications.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12166\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12166","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏合适的骨移植物,在临床上重建受伤的骨骼仍是一项挑战。PAI-1转染条件培养基(P-CM)的使用证明了其促进间充质干细胞(MSCs)分化过程的能力,有可能成为组织再生的关键介质。本研究旨在探索 P-CM 对人类骨髓间充质干细胞(hBMSCs)分化的治疗潜力。为了评估新骨的形成,研究人员采用了大鼠小腿临界缺损模型,而体外实验则使用了茜素红-S矿物质诱导试验。在大鼠小腿临界缺损模型中,P-CM 处理可导致大量新骨形成。在体外实验中,与对照组相比,经 P-CM 处理的 hBMSCs 表现出了强大的成骨能力,这一点在使用茜素红-S 进行的矿物质诱导测试中得到了证明。经羟基磷灰石/β-磷酸三钙/纤维蛋白凝胶处理的 P-CM 显著显示了新骨的形成,并且 P-CM 处理组的成骨相关标志物的表达得到了增强。总之,研究结果表明,P-CM 处理能明显提高成骨差异化效率和新骨形成,因此可作为一种理想的治疗生物分子用于构建骨特异性植入物,尤其是骨科和牙科应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PAI-1 transfected-conditioned media promotes osteogenic differentiation of hBMSCs

Reconstruction of injured bone remains challenging in the clinic owing to the lack of suitable bone grafts. The utilization of PAI-1 transfected-conditioned media (P-CM) has demonstrated its ability to facilitate the differentiation process of mesenchymal stem cells (MSCs), potentially serving as a crucial mediator in tissue regeneration. This research endeavored to explore the therapeutic potential of P-CM concerning the differentiation of human bone marrow mesenchymal stem cells (hBMSCs). To assess new bone formation, a rat calvaria critical defect model was employed, while in vitro experiments involved the use of the alizarin Red-S mineral induction test. In the rat calvaria critical defect model, P-CM treatment resulted in significan new bone formation. In vitro, P-CM treated hBMSCs displayed robust osteogenesis compared to the control group, as demonstrated by the mineral induction test using alizarin Red-S. P-CM with hydroxyapatite/β-tricalcium phosphate/fibrin gel treatment significantly exhibited new bone formation, and the expression of osteogenic associated markers was enhanced in the P-CM-treated group. In conclusion, results demonstrate that P-CM treatment significantly enhanced the osteogenic differantiation efficiency and new bone formation, thus could be used as an ideal therapeutic biomolecule for constructing bone-specific implants, especially for orthopedic and dental applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信