M. Gorman, D. McGonegle, R. F. Smith, S. Singh, T. Jenkins, R. McWilliams, B. Albertazzi, S. Ali, L. Antonelli, M. R. Armstrong, C. Baehtz, O. B. Ball, S. Banerjee, A. B. Belonoshko, A. Benuzzi-Mounaix, C. Bolme, V. Bouffetier, R. Briggs, K. Buakor, T. Butcher, S. Di Dio Cafiso, V. Cerantola, J. Chantel, A. Di Cicco, S. Clarke, A. L. Coleman, J. Collier, G. Collins, A. Comley, F. Coppari, T. Cowan, G. Cristoforetti, H. Cynn, A. Descamps, F. Dorchies, M. J. Duff, A. Dwivedi, C. Edwards, J. H. Eggert, D. Errandonea, G. Fiquet, E. Galtier, A. Laso Garcia, H. Ginestet, L. Gizzi, A. Gleason, S. Goede, J. M. Gonzalez, M. Harmand, N. Hartley, P. Heighway, C. Hernandez-Gomez, A. Higginbotham, H. Höppner, R. J. Husband, T. Hutchinson, H. Hwang, A. Lazicki, D. A. Keen, J. Kim, P. Koester, Z. Konopkova, D. Kraus, A. Krygier, L. Labate, Y. Lee, H. Liermann, P. Mason, M. Masruri, B. Massani, E. McBride, C. McGuire, J. D. McHardy, S. Merkel, G. Morard, B. Nagler, M. Nakatsutsumi, K. Nguyen-Cong, A.-M. Norton, I. I. Ole
{"title":"在欧洲 X 射线自由电子激光器的高能量密度仪器上使用 DiPOLE 100-X 激光器进行冲击压缩实验:液态锡的定量结构分析","authors":"M. Gorman, D. McGonegle, R. F. Smith, S. Singh, T. Jenkins, R. McWilliams, B. Albertazzi, S. Ali, L. Antonelli, M. R. Armstrong, C. Baehtz, O. B. Ball, S. Banerjee, A. B. Belonoshko, A. Benuzzi-Mounaix, C. Bolme, V. Bouffetier, R. Briggs, K. Buakor, T. Butcher, S. Di Dio Cafiso, V. Cerantola, J. Chantel, A. Di Cicco, S. Clarke, A. L. Coleman, J. Collier, G. Collins, A. Comley, F. Coppari, T. Cowan, G. Cristoforetti, H. Cynn, A. Descamps, F. Dorchies, M. J. Duff, A. Dwivedi, C. Edwards, J. H. Eggert, D. Errandonea, G. Fiquet, E. Galtier, A. Laso Garcia, H. Ginestet, L. Gizzi, A. Gleason, S. Goede, J. M. Gonzalez, M. Harmand, N. Hartley, P. Heighway, C. Hernandez-Gomez, A. Higginbotham, H. Höppner, R. J. Husband, T. Hutchinson, H. Hwang, A. Lazicki, D. A. Keen, J. Kim, P. Koester, Z. Konopkova, D. Kraus, A. Krygier, L. Labate, Y. Lee, H. Liermann, P. Mason, M. Masruri, B. Massani, E. McBride, C. McGuire, J. D. McHardy, S. Merkel, G. Morard, B. Nagler, M. Nakatsutsumi, K. Nguyen-Cong, A.-M. Norton, I. I. Ole","doi":"10.1063/5.0201702","DOIUrl":null,"url":null,"abstract":"X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density (HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn compressed to 85(5) GPa and ∼3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of ∼1% at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analysis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users of the HED instrument.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn\",\"authors\":\"M. Gorman, D. McGonegle, R. F. Smith, S. Singh, T. Jenkins, R. McWilliams, B. Albertazzi, S. Ali, L. Antonelli, M. R. Armstrong, C. Baehtz, O. B. Ball, S. Banerjee, A. B. Belonoshko, A. Benuzzi-Mounaix, C. Bolme, V. Bouffetier, R. Briggs, K. Buakor, T. Butcher, S. Di Dio Cafiso, V. Cerantola, J. Chantel, A. Di Cicco, S. Clarke, A. L. Coleman, J. Collier, G. Collins, A. Comley, F. Coppari, T. Cowan, G. Cristoforetti, H. Cynn, A. Descamps, F. Dorchies, M. J. Duff, A. Dwivedi, C. Edwards, J. H. Eggert, D. Errandonea, G. Fiquet, E. Galtier, A. Laso Garcia, H. Ginestet, L. Gizzi, A. Gleason, S. Goede, J. M. Gonzalez, M. Harmand, N. Hartley, P. Heighway, C. Hernandez-Gomez, A. Higginbotham, H. Höppner, R. J. Husband, T. Hutchinson, H. Hwang, A. Lazicki, D. A. Keen, J. Kim, P. Koester, Z. Konopkova, D. Kraus, A. Krygier, L. Labate, Y. Lee, H. Liermann, P. Mason, M. Masruri, B. Massani, E. McBride, C. McGuire, J. D. McHardy, S. Merkel, G. Morard, B. Nagler, M. Nakatsutsumi, K. Nguyen-Cong, A.-M. Norton, I. I. Ole\",\"doi\":\"10.1063/5.0201702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density (HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn compressed to 85(5) GPa and ∼3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of ∼1% at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analysis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users of the HED instrument.\",\"PeriodicalId\":502933,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0201702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0201702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
与高功率激光系统耦合的 X 射线自由电子激光(XFEL)源为研究极端压力和温度下的材料结构动态提供了一个途径。最近,欧洲 XFEL 高能量密度(HED)仪器上的 DiPOLE 100-X 激光器投入使用,代表了 X 射线衍射与激光压缩相结合的最先进技术,可以对压缩材料进行前所未有的详细探测。在此,我们报告了对压缩到 85(5) GPa 和 ∼3500 K 的熔融 Sn 的定量结构测量结果。HED 仪器的功能使液体密度测量的不确定性达到了 ∼1%,而这种条件是通过静态压缩方法极难达到的。我们讨论了进行液体衍射动态压缩实验的最佳实践,以及进行精确定量分析所需的强度修正。我们还提供了 DiPOLE 100-X 驱动激光器的聚酰亚胺烧蚀压力与输入激光能量的对比,这将为 HED 仪器的未来用户提供服务。
Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn
X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density (HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn compressed to 85(5) GPa and ∼3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of ∼1% at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analysis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users of the HED instrument.