Hosein Faramarzpour, Mohsen Ghaderi, Christopher Reddick, Mikhail Sorin, Michel Grégoire
{"title":"寒冷气候条件下温室的规格、数学模型和优化","authors":"Hosein Faramarzpour, Mohsen Ghaderi, Christopher Reddick, Mikhail Sorin, Michel Grégoire","doi":"10.1177/17442591241240798","DOIUrl":null,"url":null,"abstract":"In order to optimize the energy requirements (heating/cooling) of a multi-zone greenhouse, and investigate its heat recovery potential, a mathematical, dynamic energy model, coded in the MATLAB/Simulink platform, is developed. For validation, a case study in cold climate conditions is evaluated. This dynamic model, based on both energy and water vapor mass balances, was able to calculate the year-round monthly energy demand for the case study. The model calculations were compared with actual energy consumption data and were shown to have an accuracy between 6% and 15.5% for different months. The results highlighted the potential of applying a heat recovery strategy, whether with a Phase Change Material (PCM) or a Heat Recovery Ventilator (HRV). It is shown that using a HRV can reduce the energy demand of the greenhouse by 5% for January and 4% for December. Regarding the greenhouse radiation performance, the south roof contributes the most to solar heat gain in winter and summer, while the north wall makes the minimum contribution. Consequently, it is proposed to increase the area of the south roof and insulate the north wall. Thus, an asymmetrical roof configuration can receive 6% more solar radiation. Calculations show that an east-west greenhouse orientation lowers energy demand by 3%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"17 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specification of a greenhouse in cold climate condition, mathematical model and optimization\",\"authors\":\"Hosein Faramarzpour, Mohsen Ghaderi, Christopher Reddick, Mikhail Sorin, Michel Grégoire\",\"doi\":\"10.1177/17442591241240798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to optimize the energy requirements (heating/cooling) of a multi-zone greenhouse, and investigate its heat recovery potential, a mathematical, dynamic energy model, coded in the MATLAB/Simulink platform, is developed. For validation, a case study in cold climate conditions is evaluated. This dynamic model, based on both energy and water vapor mass balances, was able to calculate the year-round monthly energy demand for the case study. The model calculations were compared with actual energy consumption data and were shown to have an accuracy between 6% and 15.5% for different months. The results highlighted the potential of applying a heat recovery strategy, whether with a Phase Change Material (PCM) or a Heat Recovery Ventilator (HRV). It is shown that using a HRV can reduce the energy demand of the greenhouse by 5% for January and 4% for December. Regarding the greenhouse radiation performance, the south roof contributes the most to solar heat gain in winter and summer, while the north wall makes the minimum contribution. Consequently, it is proposed to increase the area of the south roof and insulate the north wall. Thus, an asymmetrical roof configuration can receive 6% more solar radiation. Calculations show that an east-west greenhouse orientation lowers energy demand by 3%.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17442591241240798\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17442591241240798","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Specification of a greenhouse in cold climate condition, mathematical model and optimization
In order to optimize the energy requirements (heating/cooling) of a multi-zone greenhouse, and investigate its heat recovery potential, a mathematical, dynamic energy model, coded in the MATLAB/Simulink platform, is developed. For validation, a case study in cold climate conditions is evaluated. This dynamic model, based on both energy and water vapor mass balances, was able to calculate the year-round monthly energy demand for the case study. The model calculations were compared with actual energy consumption data and were shown to have an accuracy between 6% and 15.5% for different months. The results highlighted the potential of applying a heat recovery strategy, whether with a Phase Change Material (PCM) or a Heat Recovery Ventilator (HRV). It is shown that using a HRV can reduce the energy demand of the greenhouse by 5% for January and 4% for December. Regarding the greenhouse radiation performance, the south roof contributes the most to solar heat gain in winter and summer, while the north wall makes the minimum contribution. Consequently, it is proposed to increase the area of the south roof and insulate the north wall. Thus, an asymmetrical roof configuration can receive 6% more solar radiation. Calculations show that an east-west greenhouse orientation lowers energy demand by 3%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.