M. Raja Kumar, I. Tomashchuk, J. Jouvard, M. Duband
{"title":"激光束与铝/钛重叠接头相互作用的研究","authors":"M. Raja Kumar, I. Tomashchuk, J. Jouvard, M. Duband","doi":"10.1177/14644207241246914","DOIUrl":null,"url":null,"abstract":"In-situ analysis of dissimilar laser welding in overlap configuration, which finds the most frequent application in industry, attracts an increasing attention of the research community. In the present work, emission spectroscopy and high-speed imaging were used to investigate the vapor plume behavior during a Yb:YAG laser pulse on the overlap joint between pure titanium and aluminum alloy A5754. A 15 ms long laser pulse was applied to the overlap joints, where titanium and then A5754 were placed on the top. Correlation of the obtained results with post-mortem observation of the impact zones and with a finite-element model of the keyhole evolution was performed. The combination of these approaches facilitated the development of a comprehensive phenomenological timelines of the processes, along with an evaluation of the efficacy of the employed online methods to discern the involvement of the bottom material with the melted zone. The considered configurations showed very different behavior: with reflective A5754 placed on top, the use of high laser power produced an intense keyhole propagation in bottom titanium plate, inducing rapid mix between the elements, while with titanium on top, the use of lower laser power produced prolongated keyhole stagnation at the interface with reflective A5754. High-speed imaging showed very fluctuating behavior of the plume, where the involvement of the bottom material was traduced either by a drastic drop of thermal and atomic emission after the keyhole tip enters the bottom A5754 plate, or by strong periodic bursts of Ti-rich jet after the keyhole reaches the bottom titanium plate. The results of emission spectroscopy were found in adequation with the involvement of bottom material into the melted zone, however, they are affected by plume fluctuations and by the pollution of the top plate by volatile elements.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"31 27","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The investigation of laser beam interaction with aluminum/titanium overlap joint\",\"authors\":\"M. Raja Kumar, I. Tomashchuk, J. Jouvard, M. Duband\",\"doi\":\"10.1177/14644207241246914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-situ analysis of dissimilar laser welding in overlap configuration, which finds the most frequent application in industry, attracts an increasing attention of the research community. In the present work, emission spectroscopy and high-speed imaging were used to investigate the vapor plume behavior during a Yb:YAG laser pulse on the overlap joint between pure titanium and aluminum alloy A5754. A 15 ms long laser pulse was applied to the overlap joints, where titanium and then A5754 were placed on the top. Correlation of the obtained results with post-mortem observation of the impact zones and with a finite-element model of the keyhole evolution was performed. The combination of these approaches facilitated the development of a comprehensive phenomenological timelines of the processes, along with an evaluation of the efficacy of the employed online methods to discern the involvement of the bottom material with the melted zone. The considered configurations showed very different behavior: with reflective A5754 placed on top, the use of high laser power produced an intense keyhole propagation in bottom titanium plate, inducing rapid mix between the elements, while with titanium on top, the use of lower laser power produced prolongated keyhole stagnation at the interface with reflective A5754. High-speed imaging showed very fluctuating behavior of the plume, where the involvement of the bottom material was traduced either by a drastic drop of thermal and atomic emission after the keyhole tip enters the bottom A5754 plate, or by strong periodic bursts of Ti-rich jet after the keyhole reaches the bottom titanium plate. The results of emission spectroscopy were found in adequation with the involvement of bottom material into the melted zone, however, they are affected by plume fluctuations and by the pollution of the top plate by volatile elements.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"31 27\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241246914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241246914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The investigation of laser beam interaction with aluminum/titanium overlap joint
In-situ analysis of dissimilar laser welding in overlap configuration, which finds the most frequent application in industry, attracts an increasing attention of the research community. In the present work, emission spectroscopy and high-speed imaging were used to investigate the vapor plume behavior during a Yb:YAG laser pulse on the overlap joint between pure titanium and aluminum alloy A5754. A 15 ms long laser pulse was applied to the overlap joints, where titanium and then A5754 were placed on the top. Correlation of the obtained results with post-mortem observation of the impact zones and with a finite-element model of the keyhole evolution was performed. The combination of these approaches facilitated the development of a comprehensive phenomenological timelines of the processes, along with an evaluation of the efficacy of the employed online methods to discern the involvement of the bottom material with the melted zone. The considered configurations showed very different behavior: with reflective A5754 placed on top, the use of high laser power produced an intense keyhole propagation in bottom titanium plate, inducing rapid mix between the elements, while with titanium on top, the use of lower laser power produced prolongated keyhole stagnation at the interface with reflective A5754. High-speed imaging showed very fluctuating behavior of the plume, where the involvement of the bottom material was traduced either by a drastic drop of thermal and atomic emission after the keyhole tip enters the bottom A5754 plate, or by strong periodic bursts of Ti-rich jet after the keyhole reaches the bottom titanium plate. The results of emission spectroscopy were found in adequation with the involvement of bottom material into the melted zone, however, they are affected by plume fluctuations and by the pollution of the top plate by volatile elements.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.