M. Gelléri, Michael Sterr, H. Strickfaden, Christoph Cremer, Thomas Cremer, Marion Cremer
{"title":"视角文章:用超分辨显微镜研究基因组复制的时空动态","authors":"M. Gelléri, Michael Sterr, H. Strickfaden, Christoph Cremer, Thomas Cremer, Marion Cremer","doi":"10.18388/pb.2021_523","DOIUrl":null,"url":null,"abstract":"Genome replication requires duplication of the complete set of DNA sequences together with nucleosomes and epigenetic signatures. Notwithstanding profound knowledge on mechanistic details of DNA replication, major problems of genome replication have remained unresolved. In this perspective article, we consider the accessibility of replication machines to all DNA sequences in due course, the maintenance of functionally important positional and structural features of chromatid domains during replication, and the rapid transition of CTs into prophase chromosomes with two chromatids. We illustrate this problem with EdU pulse-labeling (10 min) and chase experiments (80 min) performed with mouse myeloblast cells. Following light optical serial sectioning of nuclei with 3D structured illumination microscopy (SIM), seven DNA intensity classes were distinguished as proxies for increasing DNA compaction. In nuclei of cells fixed immediately after the pulse-label, we observed a relative under-representation of EdU-labeled DNA in low DNA density classes, representing the active nuclear compartment (ANC), and an over-representation in high density classes representing the inactive nuclear compartment (INC). Cells fixed after the chase revealed an even more pronounced shift to high DNA intensity classes. This finding contrasts with previous studies of the transcriptional topography demonstrating an under-representation of epigenetic signatures for active chromatin and RNAPII in high DNA intensity classes and their over-representation in low density classes. We discuss these findings in the light of current models viewing CDs either as structural chromatin frameworks or as phase-separated droplets, as well as methodological limitations that currently prevent an integration of this contrasting evidence for the spatial nuclear topography of replication and transcription into a common framework of the dynamic nuclear architecture.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perspective Article: Space-time dynamics of genome replication studied with super-resolved microscopy\",\"authors\":\"M. Gelléri, Michael Sterr, H. Strickfaden, Christoph Cremer, Thomas Cremer, Marion Cremer\",\"doi\":\"10.18388/pb.2021_523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome replication requires duplication of the complete set of DNA sequences together with nucleosomes and epigenetic signatures. Notwithstanding profound knowledge on mechanistic details of DNA replication, major problems of genome replication have remained unresolved. In this perspective article, we consider the accessibility of replication machines to all DNA sequences in due course, the maintenance of functionally important positional and structural features of chromatid domains during replication, and the rapid transition of CTs into prophase chromosomes with two chromatids. We illustrate this problem with EdU pulse-labeling (10 min) and chase experiments (80 min) performed with mouse myeloblast cells. Following light optical serial sectioning of nuclei with 3D structured illumination microscopy (SIM), seven DNA intensity classes were distinguished as proxies for increasing DNA compaction. In nuclei of cells fixed immediately after the pulse-label, we observed a relative under-representation of EdU-labeled DNA in low DNA density classes, representing the active nuclear compartment (ANC), and an over-representation in high density classes representing the inactive nuclear compartment (INC). Cells fixed after the chase revealed an even more pronounced shift to high DNA intensity classes. This finding contrasts with previous studies of the transcriptional topography demonstrating an under-representation of epigenetic signatures for active chromatin and RNAPII in high DNA intensity classes and their over-representation in low density classes. We discuss these findings in the light of current models viewing CDs either as structural chromatin frameworks or as phase-separated droplets, as well as methodological limitations that currently prevent an integration of this contrasting evidence for the spatial nuclear topography of replication and transcription into a common framework of the dynamic nuclear architecture.\",\"PeriodicalId\":20341,\"journal\":{\"name\":\"Postępy Biochemii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postępy Biochemii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18388/pb.2021_523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postępy Biochemii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18388/pb.2021_523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基因组复制需要复制整套 DNA 序列以及核小体和表观遗传特征。尽管对 DNA 复制的机理细节有了深入了解,但基因组复制的主要问题仍未得到解决。在这篇透视文章中,我们考虑了复制机器在适当时候对所有 DNA 序列的可及性、复制过程中染色体结构域重要位置和结构特征的维持,以及 CT 快速转变为具有两条染色体的前期染色体等问题。我们用小鼠骨髓母细胞进行的 EdU 脉冲标记(10 分钟)和追逐实验(80 分钟)来说明这个问题。用三维结构照明显微镜(SIM)对细胞核进行光学连续切片后,可区分出七个DNA强度等级,作为DNA压实度增加的代用指标。在脉冲标记后立即固定的细胞核中,我们观察到代表活跃核区(ANC)的低DNA密度等级中EdU标记DNA的比例相对较低,而代表非活跃核区(INC)的高密度等级中EdU标记DNA的比例较高。追逐后固定的细胞显示出更明显的向高 DNA 密度级的转移。这一发现与之前的转录拓扑研究形成了鲜明对比,后者表明活性染色质和 RNAPII 的表观遗传特征在高 DNA 强度等级中的代表性不足,而在低密度等级中的代表性过高。我们将根据目前将 CD 视为染色质结构框架或相分离液滴的模型,以及目前阻碍将复制和转录的核空间拓扑的对比证据整合到动态核结构的共同框架中的方法学局限性来讨论这些发现。
Perspective Article: Space-time dynamics of genome replication studied with super-resolved microscopy
Genome replication requires duplication of the complete set of DNA sequences together with nucleosomes and epigenetic signatures. Notwithstanding profound knowledge on mechanistic details of DNA replication, major problems of genome replication have remained unresolved. In this perspective article, we consider the accessibility of replication machines to all DNA sequences in due course, the maintenance of functionally important positional and structural features of chromatid domains during replication, and the rapid transition of CTs into prophase chromosomes with two chromatids. We illustrate this problem with EdU pulse-labeling (10 min) and chase experiments (80 min) performed with mouse myeloblast cells. Following light optical serial sectioning of nuclei with 3D structured illumination microscopy (SIM), seven DNA intensity classes were distinguished as proxies for increasing DNA compaction. In nuclei of cells fixed immediately after the pulse-label, we observed a relative under-representation of EdU-labeled DNA in low DNA density classes, representing the active nuclear compartment (ANC), and an over-representation in high density classes representing the inactive nuclear compartment (INC). Cells fixed after the chase revealed an even more pronounced shift to high DNA intensity classes. This finding contrasts with previous studies of the transcriptional topography demonstrating an under-representation of epigenetic signatures for active chromatin and RNAPII in high DNA intensity classes and their over-representation in low density classes. We discuss these findings in the light of current models viewing CDs either as structural chromatin frameworks or as phase-separated droplets, as well as methodological limitations that currently prevent an integration of this contrasting evidence for the spatial nuclear topography of replication and transcription into a common framework of the dynamic nuclear architecture.