{"title":"不同形状设计的透明矫治器在前牙牵引过程中对拔牙间隙区域的生物力学影响。","authors":"Bochun Mao, Yajing Tian, Yujia Xiao, Jiayi Liu, Dawei Liu, Jing Li, Yanheng Zhou","doi":"10.1111/ocr.12795","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>This study aimed to investigate the biomechanical effects of clear aligner (CA) with different shape designs at extraction space (CAES) area during space closing.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>A finite-element method (FEM) model of mandibular dentition, periodontal ligaments, attachments, and corresponding CA was established. The connecting rod design of CAES was modelled for the control group. Eight test groups with different heights of CAES from −4 mm to +4 mm were designed. Tooth displacement tendencies were calculated. The maximum principal stress in PDLs, teeth, and CAs was analysed. Both global coordinate system and local coordinate system were also used to evaluate individual tooth movements.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Across all groups, stresses concentrated on the lingual outer surface of CAESs. For the lowered CAES groups, both the stress value and the stress distribution area at CAESs were increased. The lowered CAES groups showed reduced movement in anterior teeth and less tipping tendency of the canines.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The shape of CAES has a biomechanical impact on anterior teeth movement and should be considered in aligner design. The results suggest that increasing the height of CAES can enhance anterior teeth retraction, while lowered CAES may facilitate controlled root movement. Changes in the shape of CAES represent a potential direction for biomechanical improvement of clear aligner in extraction cases and are worth exploring.</p>\n </section>\n </div>","PeriodicalId":19652,"journal":{"name":"Orthodontics & Craniofacial Research","volume":"27 5","pages":"740-749"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical effects of clear aligner with different shape design at extraction space area during anterior teeth retraction\",\"authors\":\"Bochun Mao, Yajing Tian, Yujia Xiao, Jiayi Liu, Dawei Liu, Jing Li, Yanheng Zhou\",\"doi\":\"10.1111/ocr.12795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>This study aimed to investigate the biomechanical effects of clear aligner (CA) with different shape designs at extraction space (CAES) area during space closing.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>A finite-element method (FEM) model of mandibular dentition, periodontal ligaments, attachments, and corresponding CA was established. The connecting rod design of CAES was modelled for the control group. Eight test groups with different heights of CAES from −4 mm to +4 mm were designed. Tooth displacement tendencies were calculated. The maximum principal stress in PDLs, teeth, and CAs was analysed. Both global coordinate system and local coordinate system were also used to evaluate individual tooth movements.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Across all groups, stresses concentrated on the lingual outer surface of CAESs. For the lowered CAES groups, both the stress value and the stress distribution area at CAESs were increased. The lowered CAES groups showed reduced movement in anterior teeth and less tipping tendency of the canines.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The shape of CAES has a biomechanical impact on anterior teeth movement and should be considered in aligner design. The results suggest that increasing the height of CAES can enhance anterior teeth retraction, while lowered CAES may facilitate controlled root movement. Changes in the shape of CAES represent a potential direction for biomechanical improvement of clear aligner in extraction cases and are worth exploring.</p>\\n </section>\\n </div>\",\"PeriodicalId\":19652,\"journal\":{\"name\":\"Orthodontics & Craniofacial Research\",\"volume\":\"27 5\",\"pages\":\"740-749\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orthodontics & Craniofacial Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ocr.12795\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthodontics & Craniofacial Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ocr.12795","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Biomechanical effects of clear aligner with different shape design at extraction space area during anterior teeth retraction
Objective
This study aimed to investigate the biomechanical effects of clear aligner (CA) with different shape designs at extraction space (CAES) area during space closing.
Materials and Methods
A finite-element method (FEM) model of mandibular dentition, periodontal ligaments, attachments, and corresponding CA was established. The connecting rod design of CAES was modelled for the control group. Eight test groups with different heights of CAES from −4 mm to +4 mm were designed. Tooth displacement tendencies were calculated. The maximum principal stress in PDLs, teeth, and CAs was analysed. Both global coordinate system and local coordinate system were also used to evaluate individual tooth movements.
Results
Across all groups, stresses concentrated on the lingual outer surface of CAESs. For the lowered CAES groups, both the stress value and the stress distribution area at CAESs were increased. The lowered CAES groups showed reduced movement in anterior teeth and less tipping tendency of the canines.
Conclusion
The shape of CAES has a biomechanical impact on anterior teeth movement and should be considered in aligner design. The results suggest that increasing the height of CAES can enhance anterior teeth retraction, while lowered CAES may facilitate controlled root movement. Changes in the shape of CAES represent a potential direction for biomechanical improvement of clear aligner in extraction cases and are worth exploring.
期刊介绍:
Orthodontics & Craniofacial Research - Genes, Growth and Development is published to serve its readers as an international forum for the presentation and critical discussion of issues pertinent to the advancement of the specialty of orthodontics and the evidence-based knowledge of craniofacial growth and development. This forum is based on scientifically supported information, but also includes minority and conflicting opinions.
The objective of the journal is to facilitate effective communication between the research community and practicing clinicians. Original papers of high scientific quality that report the findings of clinical trials, clinical epidemiology, and novel therapeutic or diagnostic approaches are appropriate submissions. Similarly, we welcome papers in genetics, developmental biology, syndromology, surgery, speech and hearing, and other biomedical disciplines related to clinical orthodontics and normal and abnormal craniofacial growth and development. In addition to original and basic research, the journal publishes concise reviews, case reports of substantial value, invited essays, letters, and announcements.
The journal is published quarterly. The review of submitted papers will be coordinated by the editor and members of the editorial board. It is policy to review manuscripts within 3 to 4 weeks of receipt and to publish within 3 to 6 months of acceptance.