Yuejun Ju, Ting Shen, Zhanhong Guo, Yinghong Kong, Yun Huang, Ji Hu
{"title":"在妊娠糖尿病患者中,Vitronectin 通过激活 JNK 促进滋养层细胞的胰岛素抵抗。","authors":"Yuejun Ju, Ting Shen, Zhanhong Guo, Yinghong Kong, Yun Huang, Ji Hu","doi":"10.1002/cbin.12167","DOIUrl":null,"url":null,"abstract":"<p>Gestational diabetes mellitus (GDM) is a common disorder in the clinic, which may lead to severe detrimental outcomes both for mothers and infants. However, the underlying mechanisms for GDM are still not clear. In the present study, we performed label-free proteomics using placentas from GDM patients and normal controls. Vitronectin caused our attention among differentially expressed proteins due to its potential role in the pathological progression of GDM. Vitronectin was increased in the placentas of GDM patients, which was confirmed by Western blot analysis. Vitronectin represses insulin signal transduction in trophoblast cells, whereas the knockdown of vitronectin further potentiates insulin-evoked events. Neutralization of CD51/61 abolishes the repressed insulin signal transduction in vitronectin-treated trophoblast cells. Moreover, vitronectin activates JNK in a CD51/61-depedent manner. Inhibition of JNK rescues impaired insulin signal transduction induced by vitronectin. Overall, our data indicate that vitronectin binds CD51/61 in trophoblast cells to activate JNK, and thus induces insulin resistance. In this regard, increased expression of vitronectin is likely a risk factor for the pathological progression of GDM. Moreover, blockade of vitronectin production or its receptors (CD51/61) may have therapeutic potential for dealing with GDM.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 7","pages":"1022-1034"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitronectin promotes insulin resistance in trophoblast cells by activating JNK in gestational diabetes mellitus\",\"authors\":\"Yuejun Ju, Ting Shen, Zhanhong Guo, Yinghong Kong, Yun Huang, Ji Hu\",\"doi\":\"10.1002/cbin.12167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gestational diabetes mellitus (GDM) is a common disorder in the clinic, which may lead to severe detrimental outcomes both for mothers and infants. However, the underlying mechanisms for GDM are still not clear. In the present study, we performed label-free proteomics using placentas from GDM patients and normal controls. Vitronectin caused our attention among differentially expressed proteins due to its potential role in the pathological progression of GDM. Vitronectin was increased in the placentas of GDM patients, which was confirmed by Western blot analysis. Vitronectin represses insulin signal transduction in trophoblast cells, whereas the knockdown of vitronectin further potentiates insulin-evoked events. Neutralization of CD51/61 abolishes the repressed insulin signal transduction in vitronectin-treated trophoblast cells. Moreover, vitronectin activates JNK in a CD51/61-depedent manner. Inhibition of JNK rescues impaired insulin signal transduction induced by vitronectin. Overall, our data indicate that vitronectin binds CD51/61 in trophoblast cells to activate JNK, and thus induces insulin resistance. In this regard, increased expression of vitronectin is likely a risk factor for the pathological progression of GDM. Moreover, blockade of vitronectin production or its receptors (CD51/61) may have therapeutic potential for dealing with GDM.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"48 7\",\"pages\":\"1022-1034\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12167\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12167","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Vitronectin promotes insulin resistance in trophoblast cells by activating JNK in gestational diabetes mellitus
Gestational diabetes mellitus (GDM) is a common disorder in the clinic, which may lead to severe detrimental outcomes both for mothers and infants. However, the underlying mechanisms for GDM are still not clear. In the present study, we performed label-free proteomics using placentas from GDM patients and normal controls. Vitronectin caused our attention among differentially expressed proteins due to its potential role in the pathological progression of GDM. Vitronectin was increased in the placentas of GDM patients, which was confirmed by Western blot analysis. Vitronectin represses insulin signal transduction in trophoblast cells, whereas the knockdown of vitronectin further potentiates insulin-evoked events. Neutralization of CD51/61 abolishes the repressed insulin signal transduction in vitronectin-treated trophoblast cells. Moreover, vitronectin activates JNK in a CD51/61-depedent manner. Inhibition of JNK rescues impaired insulin signal transduction induced by vitronectin. Overall, our data indicate that vitronectin binds CD51/61 in trophoblast cells to activate JNK, and thus induces insulin resistance. In this regard, increased expression of vitronectin is likely a risk factor for the pathological progression of GDM. Moreover, blockade of vitronectin production or its receptors (CD51/61) may have therapeutic potential for dealing with GDM.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.