{"title":"大气膛对弱强迫合流环境中夜间对流启动的影响","authors":"D. Reif, H. Bluestein, David B. Parsons","doi":"10.1175/mwr-d-23-0080.1","DOIUrl":null,"url":null,"abstract":"\nThis study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes idealized numerical simulations to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt-Väisälä frequency of 0.011 s−1 above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective-available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on the composite sounding. The characteristics of the simulated bore was representative of observed bores. The vertical velocities associated with this simulated bore was between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100 – 150 km ahead of the bore passage. The pre-bore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low- to mid-troposphere between 1 km and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of atmospheric bores on nocturnal convection initiation in weakly forced synoptic environments\",\"authors\":\"D. Reif, H. Bluestein, David B. Parsons\",\"doi\":\"10.1175/mwr-d-23-0080.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThis study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes idealized numerical simulations to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt-Väisälä frequency of 0.011 s−1 above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective-available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on the composite sounding. The characteristics of the simulated bore was representative of observed bores. The vertical velocities associated with this simulated bore was between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100 – 150 km ahead of the bore passage. The pre-bore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low- to mid-troposphere between 1 km and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0080.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0080.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
这项研究为弱强迫条件下的夜间对流起始(CI)事件创建了一个复合探测,并利用理想化的数值模拟来评估大气膛孔对这些环境的影响。13 个探测结果被用于创建该复合探测结果。与这些弱强迫环境相关的常见条件包括夜间低空喷流和 900 hPa 以上 0.011 s-1 的 Brunt-Väisälä 频率。实现任何对流不稳定性的包裹所需的升力中值为 490 米,这些对流不稳定性包裹的对流可用势能中值为 992 焦耳/千克-1,这些包裹的初始压力中值为 800 百帕。利用理想化的数值模拟,在基于复合探测的环境中研究了孔洞对 CI 的潜在影响。模拟钻孔的特征与观测到的钻孔具有代表性。与模拟钻孔相关的垂直速度在 1 到 2 m s-1 之间,气团的净上升位移在 400 到 650 m 之间。气团的垂直位移有两个显著阶段:钻孔本身的抬升和钻孔通过前 100 到 150 km 的较小范围抬升。钻孔前的升力在 50 米到 200 米之间,似乎与钻孔前方的低频波有关。在 AGL 1 千米到 4 千米之间的中低对流层中,这些波产生的升力最大,这种升力可能在这些受力较弱的环境中起着协助 CI 的作用。
The influence of atmospheric bores on nocturnal convection initiation in weakly forced synoptic environments
This study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes idealized numerical simulations to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt-Väisälä frequency of 0.011 s−1 above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective-available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on the composite sounding. The characteristics of the simulated bore was representative of observed bores. The vertical velocities associated with this simulated bore was between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100 – 150 km ahead of the bore passage. The pre-bore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low- to mid-troposphere between 1 km and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.