Rao Peng, Yan Si, Huyang Li, Xueyin Bai, Shujie Pang, Huaping Xiong, Tao Zhang
{"title":"用于连接 Ti-6Al-4V 合金的 Ti-Zr-Cu-Co-Fe 非晶/纳米晶钎焊填充金属","authors":"Rao Peng, Yan Si, Huyang Li, Xueyin Bai, Shujie Pang, Huaping Xiong, Tao Zhang","doi":"10.1007/s40194-024-01776-8","DOIUrl":null,"url":null,"abstract":"<div><p>A novel Ti<sub>50</sub>Zr<sub>30</sub>Cu<sub>8</sub>Co<sub>7</sub>Fe<sub>5</sub> (at.%) amorphous/nanocrystalline brazing filler metal (BFM) with low Cu content and low liquidus temperature (1154 K) was developed and prepared into a flexible ribbon by melt-spinning for brazing Ti-6Al-4V (Ti64) alloy. The effects of vacuum brazing temperature and holding time on the microstructure and mechanical properties of the joints were investigated. For the joint brazed at a low brazing temperature of 1173 K for 15 min, a messy segregated layer consisted of α-Ti, β-Ti, and Ti<sub>2</sub>Cu intermetallic compound was formed in the center of the braze zone, resulting in relatively low tensile shear strength (~ 310 MPa) of the joint. With the brazing temperature increasing up to 1233 K, the joints exhibited uniform Widmanstätten structure mainly consisting of acicular α-Ti, β-Ti, and sporadic Ti<sub>2</sub>Cu intermetallic compound without segregated layer. The Ti64 joint brazed at 1233 K for 15 min possesses an improved tensile shear strength of ~ 400 MPa. By extending the holding time to 30 min and 45 min at the brazing temperature of 1233 K, the amount of Ti<sub>2</sub>Cu intermetallic compound in the braze zone decreased, leading to the high strength of the joints up to ~ 446 and ~ 491 MPa, respectively.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 9","pages":"2473 - 2483"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ti–Zr–Cu–Co–Fe amorphous/nanocrystalline brazing filler metals for joining Ti-6Al-4V alloy\",\"authors\":\"Rao Peng, Yan Si, Huyang Li, Xueyin Bai, Shujie Pang, Huaping Xiong, Tao Zhang\",\"doi\":\"10.1007/s40194-024-01776-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel Ti<sub>50</sub>Zr<sub>30</sub>Cu<sub>8</sub>Co<sub>7</sub>Fe<sub>5</sub> (at.%) amorphous/nanocrystalline brazing filler metal (BFM) with low Cu content and low liquidus temperature (1154 K) was developed and prepared into a flexible ribbon by melt-spinning for brazing Ti-6Al-4V (Ti64) alloy. The effects of vacuum brazing temperature and holding time on the microstructure and mechanical properties of the joints were investigated. For the joint brazed at a low brazing temperature of 1173 K for 15 min, a messy segregated layer consisted of α-Ti, β-Ti, and Ti<sub>2</sub>Cu intermetallic compound was formed in the center of the braze zone, resulting in relatively low tensile shear strength (~ 310 MPa) of the joint. With the brazing temperature increasing up to 1233 K, the joints exhibited uniform Widmanstätten structure mainly consisting of acicular α-Ti, β-Ti, and sporadic Ti<sub>2</sub>Cu intermetallic compound without segregated layer. The Ti64 joint brazed at 1233 K for 15 min possesses an improved tensile shear strength of ~ 400 MPa. By extending the holding time to 30 min and 45 min at the brazing temperature of 1233 K, the amount of Ti<sub>2</sub>Cu intermetallic compound in the braze zone decreased, leading to the high strength of the joints up to ~ 446 and ~ 491 MPa, respectively.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"68 9\",\"pages\":\"2473 - 2483\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01776-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01776-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Ti–Zr–Cu–Co–Fe amorphous/nanocrystalline brazing filler metals for joining Ti-6Al-4V alloy
A novel Ti50Zr30Cu8Co7Fe5 (at.%) amorphous/nanocrystalline brazing filler metal (BFM) with low Cu content and low liquidus temperature (1154 K) was developed and prepared into a flexible ribbon by melt-spinning for brazing Ti-6Al-4V (Ti64) alloy. The effects of vacuum brazing temperature and holding time on the microstructure and mechanical properties of the joints were investigated. For the joint brazed at a low brazing temperature of 1173 K for 15 min, a messy segregated layer consisted of α-Ti, β-Ti, and Ti2Cu intermetallic compound was formed in the center of the braze zone, resulting in relatively low tensile shear strength (~ 310 MPa) of the joint. With the brazing temperature increasing up to 1233 K, the joints exhibited uniform Widmanstätten structure mainly consisting of acicular α-Ti, β-Ti, and sporadic Ti2Cu intermetallic compound without segregated layer. The Ti64 joint brazed at 1233 K for 15 min possesses an improved tensile shear strength of ~ 400 MPa. By extending the holding time to 30 min and 45 min at the brazing temperature of 1233 K, the amount of Ti2Cu intermetallic compound in the braze zone decreased, leading to the high strength of the joints up to ~ 446 and ~ 491 MPa, respectively.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.