城市路网中的旅行时间可靠性估计:统计分布和张量分解的利用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Linzhi Zou, Jiawen Wang, Minqian Cheng, Jiayu Hang
{"title":"城市路网中的旅行时间可靠性估计:统计分布和张量分解的利用","authors":"Linzhi Zou,&nbsp;Jiawen Wang,&nbsp;Minqian Cheng,&nbsp;Jiayu Hang","doi":"10.1155/2024/4912642","DOIUrl":null,"url":null,"abstract":"<p>The travel time reliability (TTR) is crucial for evaluating the reliability of road networks, but real traffic data is often incomplete and sparse. This study validates that road network TTR conforms to a normal distribution and devises a quantification approach for road network TTR. Two reliability estimation methods are tailored for two data sources: section detectors and mobile detectors. Simulation experiments have confirmed the effectiveness of these methods. The study emphasizes that the TTR estimation method using traffic section data (S-TTR), which is based on the verified normal distribution assumption, maintains average absolute errors below 10%. On the other hand, the TTR estimation method that utilizes sparse trajectory data (T-TTR), which relies on tensor decomposition, proficiently fills in all missing data with an average error of 0.0059.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Travel Time Reliability Estimation in Urban Road Networks: Utilization of Statistics Distribution and Tensor Decomposition\",\"authors\":\"Linzhi Zou,&nbsp;Jiawen Wang,&nbsp;Minqian Cheng,&nbsp;Jiayu Hang\",\"doi\":\"10.1155/2024/4912642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The travel time reliability (TTR) is crucial for evaluating the reliability of road networks, but real traffic data is often incomplete and sparse. This study validates that road network TTR conforms to a normal distribution and devises a quantification approach for road network TTR. Two reliability estimation methods are tailored for two data sources: section detectors and mobile detectors. Simulation experiments have confirmed the effectiveness of these methods. The study emphasizes that the TTR estimation method using traffic section data (S-TTR), which is based on the verified normal distribution assumption, maintains average absolute errors below 10%. On the other hand, the TTR estimation method that utilizes sparse trajectory data (T-TTR), which relies on tensor decomposition, proficiently fills in all missing data with an average error of 0.0059.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4912642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4912642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

旅行时间可靠性(TTR)对于评估道路网络的可靠性至关重要,但实际交通数据往往不完整且稀少。本研究验证了路网 TTR 符合正态分布,并设计了路网 TTR 的量化方法。针对路段检测器和移动检测器这两种数据源量身定制了两种可靠性估算方法。模拟实验证实了这些方法的有效性。研究强调,使用交通断面数据(S-TTR)的 TTR 估算方法基于经过验证的正态分布假设,可将平均绝对误差保持在 10% 以下。另一方面,利用稀疏轨迹数据的 TTR 估算方法(T-TTR)依赖于张量分解,能有效填补所有缺失数据,平均误差为 0.0059。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Travel Time Reliability Estimation in Urban Road Networks: Utilization of Statistics Distribution and Tensor Decomposition

The travel time reliability (TTR) is crucial for evaluating the reliability of road networks, but real traffic data is often incomplete and sparse. This study validates that road network TTR conforms to a normal distribution and devises a quantification approach for road network TTR. Two reliability estimation methods are tailored for two data sources: section detectors and mobile detectors. Simulation experiments have confirmed the effectiveness of these methods. The study emphasizes that the TTR estimation method using traffic section data (S-TTR), which is based on the verified normal distribution assumption, maintains average absolute errors below 10%. On the other hand, the TTR estimation method that utilizes sparse trajectory data (T-TTR), which relies on tensor decomposition, proficiently fills in all missing data with an average error of 0.0059.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信