室内燃煤环境中暴露于 NPAH 对儿童肺功能的影响

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Indoor air Pub Date : 2024-04-23 DOI:10.1155/2024/6192008
Beibei Wang, He Huang, Ning Qin, Wenjing Zhao, Qin Wang, Suzhen Cao, Xing Chen, Xiangyu Xu, Xiaoli Duan
{"title":"室内燃煤环境中暴露于 NPAH 对儿童肺功能的影响","authors":"Beibei Wang,&nbsp;He Huang,&nbsp;Ning Qin,&nbsp;Wenjing Zhao,&nbsp;Qin Wang,&nbsp;Suzhen Cao,&nbsp;Xing Chen,&nbsp;Xiangyu Xu,&nbsp;Xiaoli Duan","doi":"10.1155/2024/6192008","DOIUrl":null,"url":null,"abstract":"<p>Nitropolycyclic aromatic hydrocarbon (NPAH) emissions from the combustion of household solid fuel may cause great harm to public health. Children are one of the most susceptible population groups at risk of indoor air pollutants due to their immature respiratory and immune systems. In this study, a primary school using household coal combustion for heating in winter was selected and forty participants were randomly recruited among schoolchildren. Fine particulate matter samples were collected by both individual portable samplers and fixed middle-flow samplers during the heating and nonheating seasons. The NPAH concentrations in PM<sub>2.5</sub> samples were analyzed by a gas chromatograph coupled to a mass spectrometer. Potential sources of NPAHs were identified by NPAH ratios as well as principal component analysis. Lung function of children was tested by an electronic spirometer. The relationship between NPAH exposure level and children’s lung function was studied. Finally, the cancer risk caused by NPAH inhalation was assessed. The results showed significantly higher individual NPAH exposure level in heating season (0.901 ± 0.396 ng·m<sup>-3</sup>) than that in nonheating season (0.094 ± 0.107 ng·m<sup>-3</sup>). Coal/biomass combustion and secondary formation were the potential NPAH sources in heating season. Significantly lower lung function of children was also found in heating season compared with that in nonheating season. As a result of the Monte Carlo simulation, the averaged incremental lifetime cancer risk (ILCR) values from the inhalation of NPAHs in the heating and nonheating seasons were 3.50 × 10<sup>−8</sup> and 2.13 × 10<sup>−8</sup>, respectively. Our research revealed the association between NPAH exposure and children’s lung function and confirmed the adverse effect of indoor coal combustion. The results also indicated that further control strategies on indoor coal combustion are needed to reduce the risk of NPAH exposure and protect children’s health.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of NPAH Exposure on Lung Function of Children in Indoor Coal Combustion Environment\",\"authors\":\"Beibei Wang,&nbsp;He Huang,&nbsp;Ning Qin,&nbsp;Wenjing Zhao,&nbsp;Qin Wang,&nbsp;Suzhen Cao,&nbsp;Xing Chen,&nbsp;Xiangyu Xu,&nbsp;Xiaoli Duan\",\"doi\":\"10.1155/2024/6192008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nitropolycyclic aromatic hydrocarbon (NPAH) emissions from the combustion of household solid fuel may cause great harm to public health. Children are one of the most susceptible population groups at risk of indoor air pollutants due to their immature respiratory and immune systems. In this study, a primary school using household coal combustion for heating in winter was selected and forty participants were randomly recruited among schoolchildren. Fine particulate matter samples were collected by both individual portable samplers and fixed middle-flow samplers during the heating and nonheating seasons. The NPAH concentrations in PM<sub>2.5</sub> samples were analyzed by a gas chromatograph coupled to a mass spectrometer. Potential sources of NPAHs were identified by NPAH ratios as well as principal component analysis. Lung function of children was tested by an electronic spirometer. The relationship between NPAH exposure level and children’s lung function was studied. Finally, the cancer risk caused by NPAH inhalation was assessed. The results showed significantly higher individual NPAH exposure level in heating season (0.901 ± 0.396 ng·m<sup>-3</sup>) than that in nonheating season (0.094 ± 0.107 ng·m<sup>-3</sup>). Coal/biomass combustion and secondary formation were the potential NPAH sources in heating season. Significantly lower lung function of children was also found in heating season compared with that in nonheating season. As a result of the Monte Carlo simulation, the averaged incremental lifetime cancer risk (ILCR) values from the inhalation of NPAHs in the heating and nonheating seasons were 3.50 × 10<sup>−8</sup> and 2.13 × 10<sup>−8</sup>, respectively. Our research revealed the association between NPAH exposure and children’s lung function and confirmed the adverse effect of indoor coal combustion. The results also indicated that further control strategies on indoor coal combustion are needed to reduce the risk of NPAH exposure and protect children’s health.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6192008\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6192008","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

家用固体燃料燃烧时排放的硝基多环芳烃(NPAH)可能会对公众健康造成巨大危害。由于呼吸系统和免疫系统尚未发育成熟,儿童是最容易受到室内空气污染物危害的人群之一。本研究选取了一所冬季使用家用燃煤取暖的小学,在学生中随机招募了 40 名参与者。在供暖季和非供暖季期间,使用单个便携式采样器和固定式中间流采样器采集细颗粒物样本。PM2.5 样本中的 NPAH 浓度由气相色谱仪结合质谱仪进行分析。通过 NPAH 比率和主成分分析确定了 NPAHs 的潜在来源。使用电子肺活量计测试了儿童的肺功能。研究了 NPAH 暴露水平与儿童肺功能之间的关系。最后,对吸入 NPAH 所导致的癌症风险进行了评估。结果显示,采暖季节的个体非酚 AH 暴露水平(0.901±0.396 ng-m-3)明显高于非采暖季节(0.094±0.107 ng-m-3)。煤炭/生物质燃烧和二次形成是采暖季潜在的 NPAH 来源。采暖季儿童的肺功能也明显低于非采暖季。蒙特卡洛模拟结果显示,采暖季和非采暖季吸入 NPAHs 的平均终生癌症风险增量(ILCR)值分别为 3.50×10-8 和 2.13×10-8。我们的研究揭示了NPAH暴露与儿童肺功能之间的关系,证实了室内燃煤的不良影响。研究结果还表明,需要对室内燃煤采取进一步的控制策略,以降低非酚 AH 暴露风险,保护儿童健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of NPAH Exposure on Lung Function of Children in Indoor Coal Combustion Environment

Nitropolycyclic aromatic hydrocarbon (NPAH) emissions from the combustion of household solid fuel may cause great harm to public health. Children are one of the most susceptible population groups at risk of indoor air pollutants due to their immature respiratory and immune systems. In this study, a primary school using household coal combustion for heating in winter was selected and forty participants were randomly recruited among schoolchildren. Fine particulate matter samples were collected by both individual portable samplers and fixed middle-flow samplers during the heating and nonheating seasons. The NPAH concentrations in PM2.5 samples were analyzed by a gas chromatograph coupled to a mass spectrometer. Potential sources of NPAHs were identified by NPAH ratios as well as principal component analysis. Lung function of children was tested by an electronic spirometer. The relationship between NPAH exposure level and children’s lung function was studied. Finally, the cancer risk caused by NPAH inhalation was assessed. The results showed significantly higher individual NPAH exposure level in heating season (0.901 ± 0.396 ng·m-3) than that in nonheating season (0.094 ± 0.107 ng·m-3). Coal/biomass combustion and secondary formation were the potential NPAH sources in heating season. Significantly lower lung function of children was also found in heating season compared with that in nonheating season. As a result of the Monte Carlo simulation, the averaged incremental lifetime cancer risk (ILCR) values from the inhalation of NPAHs in the heating and nonheating seasons were 3.50 × 10−8 and 2.13 × 10−8, respectively. Our research revealed the association between NPAH exposure and children’s lung function and confirmed the adverse effect of indoor coal combustion. The results also indicated that further control strategies on indoor coal combustion are needed to reduce the risk of NPAH exposure and protect children’s health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信