Ibrahim A Darwish, Nourah Z. Alzoman, M. S. Alsalhi
{"title":"开发两种环保型高通量微孔分光光度法,用于分析散装抗菌药图拉霉素","authors":"Ibrahim A Darwish, Nourah Z. Alzoman, M. S. Alsalhi","doi":"10.1093/jaoacint/qsae035","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nTulathromycin (TUL) is a triamilide antibacterial drug which has been approved for use in the European Union and the United States for the treatment and prevention of bovine respiratory diseases. The existing methods for determination of TUL in its pharmaceutical bulk form are very limited and suffer from major drawbacks.\n\n\nOBJECTIVES\nThe aim of this study was the development of two innovative microwell spectrophotometric methods (MW-SPMs) for determination of TUL in its pharmaceutical bulk form.\n\n\nMETHODS\nThe formation of charge transfer complexes (CTCs) of TUL, as an electron donor, was investigated with 2,5-dihydroxy-3,6-dichlorocyclohexa-2,5-diene-1,4-dione (HCD) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (CBQ), as π-electron acceptors. The CTCs were characterized by using UV-visible spectrophotometry and computational calculations. The reactions were employed for the development of two MW-SPMs with a one-step for the quantitative analysis of TUL.\n\n\nRESULTS\nThe formation of CTCs was confirmed via the formation of characteristic absorption bands with maximum absorption at 520 and 460 nm for CTCs with HCD and CBQ, respectively. The stoichiometry of both CTCs was found to be 1:1, and the values of different spectroscopic and electronic constants confirmed the stability of the CTCs. The mechanisms of the reactions were postulated. The linear range of both MW-SPMs was 10-500 µg/mL. The limits of quantitation were 13.5 and 26.4 µg/mL for methods involving reactions with HCD and CBQ, respectively. Both methods were successfully applied to the quantitation of TUL in pharmaceutical bulk form with acceptable accuracy and precision. The results of eco-friendliness/greenness assessment proved that both MW-SPMs fulfill the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes in the proposed methods gave them the advantage of high throughput analysis.\n\n\nCONCLUSIONS\nThis study described two new MW-SPMs as valuable analytical tools for the determination of TUL.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"7 12","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Two Eco-Friendly and High-Throughput Microwell Spectrophotometric Methods for Analysis of an Antibacterial Drug Tulathromycin in Pharmaceutical Bulk Form.\",\"authors\":\"Ibrahim A Darwish, Nourah Z. Alzoman, M. S. Alsalhi\",\"doi\":\"10.1093/jaoacint/qsae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nTulathromycin (TUL) is a triamilide antibacterial drug which has been approved for use in the European Union and the United States for the treatment and prevention of bovine respiratory diseases. The existing methods for determination of TUL in its pharmaceutical bulk form are very limited and suffer from major drawbacks.\\n\\n\\nOBJECTIVES\\nThe aim of this study was the development of two innovative microwell spectrophotometric methods (MW-SPMs) for determination of TUL in its pharmaceutical bulk form.\\n\\n\\nMETHODS\\nThe formation of charge transfer complexes (CTCs) of TUL, as an electron donor, was investigated with 2,5-dihydroxy-3,6-dichlorocyclohexa-2,5-diene-1,4-dione (HCD) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (CBQ), as π-electron acceptors. The CTCs were characterized by using UV-visible spectrophotometry and computational calculations. The reactions were employed for the development of two MW-SPMs with a one-step for the quantitative analysis of TUL.\\n\\n\\nRESULTS\\nThe formation of CTCs was confirmed via the formation of characteristic absorption bands with maximum absorption at 520 and 460 nm for CTCs with HCD and CBQ, respectively. The stoichiometry of both CTCs was found to be 1:1, and the values of different spectroscopic and electronic constants confirmed the stability of the CTCs. The mechanisms of the reactions were postulated. The linear range of both MW-SPMs was 10-500 µg/mL. The limits of quantitation were 13.5 and 26.4 µg/mL for methods involving reactions with HCD and CBQ, respectively. Both methods were successfully applied to the quantitation of TUL in pharmaceutical bulk form with acceptable accuracy and precision. The results of eco-friendliness/greenness assessment proved that both MW-SPMs fulfill the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes in the proposed methods gave them the advantage of high throughput analysis.\\n\\n\\nCONCLUSIONS\\nThis study described two new MW-SPMs as valuable analytical tools for the determination of TUL.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jaoacint/qsae035\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jaoacint/qsae035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of Two Eco-Friendly and High-Throughput Microwell Spectrophotometric Methods for Analysis of an Antibacterial Drug Tulathromycin in Pharmaceutical Bulk Form.
BACKGROUND
Tulathromycin (TUL) is a triamilide antibacterial drug which has been approved for use in the European Union and the United States for the treatment and prevention of bovine respiratory diseases. The existing methods for determination of TUL in its pharmaceutical bulk form are very limited and suffer from major drawbacks.
OBJECTIVES
The aim of this study was the development of two innovative microwell spectrophotometric methods (MW-SPMs) for determination of TUL in its pharmaceutical bulk form.
METHODS
The formation of charge transfer complexes (CTCs) of TUL, as an electron donor, was investigated with 2,5-dihydroxy-3,6-dichlorocyclohexa-2,5-diene-1,4-dione (HCD) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (CBQ), as π-electron acceptors. The CTCs were characterized by using UV-visible spectrophotometry and computational calculations. The reactions were employed for the development of two MW-SPMs with a one-step for the quantitative analysis of TUL.
RESULTS
The formation of CTCs was confirmed via the formation of characteristic absorption bands with maximum absorption at 520 and 460 nm for CTCs with HCD and CBQ, respectively. The stoichiometry of both CTCs was found to be 1:1, and the values of different spectroscopic and electronic constants confirmed the stability of the CTCs. The mechanisms of the reactions were postulated. The linear range of both MW-SPMs was 10-500 µg/mL. The limits of quantitation were 13.5 and 26.4 µg/mL for methods involving reactions with HCD and CBQ, respectively. Both methods were successfully applied to the quantitation of TUL in pharmaceutical bulk form with acceptable accuracy and precision. The results of eco-friendliness/greenness assessment proved that both MW-SPMs fulfill the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes in the proposed methods gave them the advantage of high throughput analysis.
CONCLUSIONS
This study described two new MW-SPMs as valuable analytical tools for the determination of TUL.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.