压合尺寸对人类和绵羊骨软骨移植物插入力学和软骨活力的影响

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
R. P. Suderman, M.B. Hurtig, M.D. Grynpas, P.R.T. Kuzyk, A. Changoor
{"title":"压合尺寸对人类和绵羊骨软骨移植物插入力学和软骨活力的影响","authors":"R. P. Suderman, M.B. Hurtig, M.D. Grynpas, P.R.T. Kuzyk, A. Changoor","doi":"10.1177/19476035241247297","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\nThe osteochondral allograft procedure uses grafts constructed larger than the recipient site to stabilize the graft, in what is known as the press-fit technique. This research aims to characterize the relationships between press-fit size, insertion forces, and cell viability in ovine and human osteochondral tissue.\n\n\nDESIGN\nHuman (4 donors) and ovine (5 animals) articular joints were used to harvest osteochondral grafts (4.55 mm diameter, N = 33 Human, N = 35 Ovine) and create recipient sites with grafts constructed to achieve varying degrees of press fit (0.025-0.240 mm). Donor grafts were inserted into recipient sites while insertion forces were measured followed by quantification of chondrocyte viability and histological staining to evaluate the extracellular matrix.\n\n\nRESULTS\nBoth human and ovine tissues exhibited similar mechanical and cellular responses to changes in press-fit. Insertion forces (Human: 3-169 MPa, Ovine: 36-314 MPa) and cell viability (Human: 16%-89% live, Ovine: 2%-76% live) were correlated to press-fit size for both human (force: r = 0.539, viability: r = -0.729) and ovine (force: r = 0.655, viability: r = -0.714) tissues. In both species, a press-fit above 0.14 mm resulted in reduced cell viability below a level acceptable for transplantation, increased insertion forces, and reduced linear correlation to press-fit size compared to samples with a press-fit below 0.14 mm.\n\n\nCONCLUSIONS\nIncreasing press-fit size required increased insertion forces and resulted in reduced cell viability. Ovine and human osteochondral tissues responded similarly to impact insertion and varying press-fit size, providing evidence for the use of the ovine model in allograft-related research.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"52 7","pages":"19476035241247297"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Press-Fit Size on Insertion Mechanics and Cartilage Viability in Human and Ovine Osteochondral Grafts.\",\"authors\":\"R. P. Suderman, M.B. Hurtig, M.D. Grynpas, P.R.T. Kuzyk, A. Changoor\",\"doi\":\"10.1177/19476035241247297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE\\nThe osteochondral allograft procedure uses grafts constructed larger than the recipient site to stabilize the graft, in what is known as the press-fit technique. This research aims to characterize the relationships between press-fit size, insertion forces, and cell viability in ovine and human osteochondral tissue.\\n\\n\\nDESIGN\\nHuman (4 donors) and ovine (5 animals) articular joints were used to harvest osteochondral grafts (4.55 mm diameter, N = 33 Human, N = 35 Ovine) and create recipient sites with grafts constructed to achieve varying degrees of press fit (0.025-0.240 mm). Donor grafts were inserted into recipient sites while insertion forces were measured followed by quantification of chondrocyte viability and histological staining to evaluate the extracellular matrix.\\n\\n\\nRESULTS\\nBoth human and ovine tissues exhibited similar mechanical and cellular responses to changes in press-fit. Insertion forces (Human: 3-169 MPa, Ovine: 36-314 MPa) and cell viability (Human: 16%-89% live, Ovine: 2%-76% live) were correlated to press-fit size for both human (force: r = 0.539, viability: r = -0.729) and ovine (force: r = 0.655, viability: r = -0.714) tissues. In both species, a press-fit above 0.14 mm resulted in reduced cell viability below a level acceptable for transplantation, increased insertion forces, and reduced linear correlation to press-fit size compared to samples with a press-fit below 0.14 mm.\\n\\n\\nCONCLUSIONS\\nIncreasing press-fit size required increased insertion forces and resulted in reduced cell viability. Ovine and human osteochondral tissues responded similarly to impact insertion and varying press-fit size, providing evidence for the use of the ovine model in allograft-related research.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"52 7\",\"pages\":\"19476035241247297\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19476035241247297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19476035241247297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的骨软骨异体移植手术使用比受体部位更大的移植物来稳定移植物,即所谓的压入技术。设计用人(4 名供体)和绵羊(5 只动物)的关节来采集骨软骨移植物(直径 4.55 毫米,N = 33 人,N = 35 绵羊),并用移植物创建受体部位,以实现不同程度的压入配合(0.025-0.240 毫米)。将供体移植物插入受体部位,同时测量插入力,然后量化软骨细胞的活力并进行组织学染色,以评估细胞外基质。插入力(人:3-169 兆帕;绵羊:36-314 兆帕)和细胞存活率(人:16%-89% 活细胞;绵羊:2%-76% 活细胞)与人(插入力:r = 0.539;存活率:r = -0.729)和绵羊(插入力:r = 0.655;存活率:r = -0.714)组织的压合大小相关。在这两种组织中,与压入度低于 0.14 mm 的样本相比,压入度超过 0.14 mm 会导致细胞存活率降低到移植可接受的水平以下、插入力增加以及与压入度大小的线性相关性降低。绵羊和人类骨软骨组织对冲击插入和不同压入尺寸的反应相似,这为在同种异体移植相关研究中使用绵羊模型提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Press-Fit Size on Insertion Mechanics and Cartilage Viability in Human and Ovine Osteochondral Grafts.
OBJECTIVE The osteochondral allograft procedure uses grafts constructed larger than the recipient site to stabilize the graft, in what is known as the press-fit technique. This research aims to characterize the relationships between press-fit size, insertion forces, and cell viability in ovine and human osteochondral tissue. DESIGN Human (4 donors) and ovine (5 animals) articular joints were used to harvest osteochondral grafts (4.55 mm diameter, N = 33 Human, N = 35 Ovine) and create recipient sites with grafts constructed to achieve varying degrees of press fit (0.025-0.240 mm). Donor grafts were inserted into recipient sites while insertion forces were measured followed by quantification of chondrocyte viability and histological staining to evaluate the extracellular matrix. RESULTS Both human and ovine tissues exhibited similar mechanical and cellular responses to changes in press-fit. Insertion forces (Human: 3-169 MPa, Ovine: 36-314 MPa) and cell viability (Human: 16%-89% live, Ovine: 2%-76% live) were correlated to press-fit size for both human (force: r = 0.539, viability: r = -0.729) and ovine (force: r = 0.655, viability: r = -0.714) tissues. In both species, a press-fit above 0.14 mm resulted in reduced cell viability below a level acceptable for transplantation, increased insertion forces, and reduced linear correlation to press-fit size compared to samples with a press-fit below 0.14 mm. CONCLUSIONS Increasing press-fit size required increased insertion forces and resulted in reduced cell viability. Ovine and human osteochondral tissues responded similarly to impact insertion and varying press-fit size, providing evidence for the use of the ovine model in allograft-related research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信