广义亥姆霍兹模型描述了离子液体和浓水性电解质的电容曲线。

Suehyun Park, Jesse G McDaniel
{"title":"广义亥姆霍兹模型描述了离子液体和浓水性电解质的电容曲线。","authors":"Suehyun Park, Jesse G McDaniel","doi":"10.1063/5.0194360","DOIUrl":null,"url":null,"abstract":"In this work, we propose and validate a generalization of the Helmholtz model that can account for both \"bell-shaped\" and \"camel-shaped\" differential capacitance profiles of concentrated electrolytes, the latter being characteristic of ionic liquids. The generalization is based on introducing voltage dependence of both the dielectric constant \"ϵr(V)\" and thickness \"L(V)\" of the inner Helmholtz layer, as validated by molecular dynamics (MD) simulations. We utilize MD simulations to study the capacitance profiles of three different electrochemical interfaces: (1) graphite/[BMIm+][BF4-] ionic liquid interface; (2) Au(100)/[BMIm+][BF4-] ionic liquid interface; (3) Au(100)/1M [Na+][Cl-] aqueous interface. We compute the voltage dependence of ϵr(V) and L(V) and demonstrate that the generalized Helmholtz model qualitatively describes both camel-shaped and bell-shaped differential capacitance profiles of ionic liquids and concentrated aqueous electrolytes (in lieu of specific ion adsorption). In particular, the camel-shaped capacitance profile that is characteristic of ionic liquid electrolytes arises simply from combination of the voltage-dependent trends of ϵr(V) and L(V). Furthermore, explicit analysis of the inner layer charge density for both concentrated aqueous and ionic liquid double layers reveal similarities, with these charge distributions typically exhibiting a dipolar region closest to the electrode followed by a monopolar peak at larger distances. It is appealing that a generalized Helmholtz model can provide a unified description of the inner layer structure and capacitance profile for seemingly disparate aqueous and ionic liquid electrolytes.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"57 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Helmholtz model describes capacitance profiles of ionic liquids and concentrated aqueous electrolytes.\",\"authors\":\"Suehyun Park, Jesse G McDaniel\",\"doi\":\"10.1063/5.0194360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose and validate a generalization of the Helmholtz model that can account for both \\\"bell-shaped\\\" and \\\"camel-shaped\\\" differential capacitance profiles of concentrated electrolytes, the latter being characteristic of ionic liquids. The generalization is based on introducing voltage dependence of both the dielectric constant \\\"ϵr(V)\\\" and thickness \\\"L(V)\\\" of the inner Helmholtz layer, as validated by molecular dynamics (MD) simulations. We utilize MD simulations to study the capacitance profiles of three different electrochemical interfaces: (1) graphite/[BMIm+][BF4-] ionic liquid interface; (2) Au(100)/[BMIm+][BF4-] ionic liquid interface; (3) Au(100)/1M [Na+][Cl-] aqueous interface. We compute the voltage dependence of ϵr(V) and L(V) and demonstrate that the generalized Helmholtz model qualitatively describes both camel-shaped and bell-shaped differential capacitance profiles of ionic liquids and concentrated aqueous electrolytes (in lieu of specific ion adsorption). In particular, the camel-shaped capacitance profile that is characteristic of ionic liquid electrolytes arises simply from combination of the voltage-dependent trends of ϵr(V) and L(V). Furthermore, explicit analysis of the inner layer charge density for both concentrated aqueous and ionic liquid double layers reveal similarities, with these charge distributions typically exhibiting a dipolar region closest to the electrode followed by a monopolar peak at larger distances. It is appealing that a generalized Helmholtz model can provide a unified description of the inner layer structure and capacitance profile for seemingly disparate aqueous and ionic liquid electrolytes.\",\"PeriodicalId\":501648,\"journal\":{\"name\":\"The Journal of Chemical Physics\",\"volume\":\"57 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0194360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0194360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出并验证了亥姆霍兹模型的广义,该模型可以解释浓电解质的 "钟形 "和 "骆驼形 "微分电容曲线,后者是离子液体的特征。分子动力学(MD)模拟验证了这一点,并在此基础上引入了介电常数 "ϵr(V) "和内部亥姆霍兹层厚度 "L(V) "对电压的依赖性。我们利用 MD 模拟研究了三种不同电化学界面的电容曲线:(1) 石墨/[BMIm+][BF4-] 离子液体界面;(2) Au(100)/[BMIm+][BF4-] 离子液体界面;(3) Au(100)/1M [Na+][Cl-] 水界面。我们计算了ϵr(V) 和 L(V) 的电压依赖性,并证明广义亥姆霍兹模型可定性地描述离子液体和浓水性电解质(代替特定离子吸附)的驼峰形和钟形微分电容曲线。特别是,离子液体电解质特有的驼峰形电容曲线是由ϵr(V) 和 L(V) 的电压变化趋势组合而成的。此外,对浓水性双电层和离子液体双电层内层电荷密度的显式分析显示出相似之处,这些电荷分布通常表现为最靠近电极的双极性区域,然后是较大距离处的单极性峰值。对于看似不同的水性和离子液体电解质,广义的亥姆霍兹模型可以提供内层结构和电容曲线的统一描述,这一点很有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Helmholtz model describes capacitance profiles of ionic liquids and concentrated aqueous electrolytes.
In this work, we propose and validate a generalization of the Helmholtz model that can account for both "bell-shaped" and "camel-shaped" differential capacitance profiles of concentrated electrolytes, the latter being characteristic of ionic liquids. The generalization is based on introducing voltage dependence of both the dielectric constant "ϵr(V)" and thickness "L(V)" of the inner Helmholtz layer, as validated by molecular dynamics (MD) simulations. We utilize MD simulations to study the capacitance profiles of three different electrochemical interfaces: (1) graphite/[BMIm+][BF4-] ionic liquid interface; (2) Au(100)/[BMIm+][BF4-] ionic liquid interface; (3) Au(100)/1M [Na+][Cl-] aqueous interface. We compute the voltage dependence of ϵr(V) and L(V) and demonstrate that the generalized Helmholtz model qualitatively describes both camel-shaped and bell-shaped differential capacitance profiles of ionic liquids and concentrated aqueous electrolytes (in lieu of specific ion adsorption). In particular, the camel-shaped capacitance profile that is characteristic of ionic liquid electrolytes arises simply from combination of the voltage-dependent trends of ϵr(V) and L(V). Furthermore, explicit analysis of the inner layer charge density for both concentrated aqueous and ionic liquid double layers reveal similarities, with these charge distributions typically exhibiting a dipolar region closest to the electrode followed by a monopolar peak at larger distances. It is appealing that a generalized Helmholtz model can provide a unified description of the inner layer structure and capacitance profile for seemingly disparate aqueous and ionic liquid electrolytes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信