技术合金上的单气泡空化诱发点蚀

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jonas Kühlmann, Sebastian A. Kaiser
{"title":"技术合金上的单气泡空化诱发点蚀","authors":"Jonas Kühlmann,&nbsp;Sebastian A. Kaiser","doi":"10.1007/s11249-024-01851-7","DOIUrl":null,"url":null,"abstract":"<div><p>Repeated single cavitation bubble experiments were performed primarily on 316L stainless steel, and some on nickel–aluminum–bronze (NAB) and pure aluminum. The bubble dynamics were recorded with two high-speed cameras and correlated with surface images, also acquired in situ. These experiments were performed for a range of stand-off distances <i>γ</i> (the ratio of the distance of the solid surface from the bubble to the bubble’s maximum radius) from 0.3 to 2.15. For all stand-off distances, single pits were the only surface change detected at the beginning of damage formation. Later phases of the collapse are not axisymmetric but show regions of “stronger” collapse, and the pits occur on the material underneath those regions. For <i>γ</i> &lt; 0.4, the damage is attributed to the second collapse. For <i>γ</i> &gt; 0.4, the first bubble collapse is most likely responsible for pitting. Shock-wave emission was detected from the collapse regions that were linked to the damage. On 316L, the pitting rate was found to be linearly dependent on the bubble radius, indicating a non-zero lower limit for the bubble radius below which pits do not occur. In terms of stand-off distance, the pitting rate (defined here as average pits per bubble) was non-monotonic, with maxima for bubbles initiated closest to the sample (<i>γ</i> = 0.3) and at <i>γ</i> = 1.4.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01851-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Single-Bubble Cavitation-Induced Pitting on Technical Alloys\",\"authors\":\"Jonas Kühlmann,&nbsp;Sebastian A. Kaiser\",\"doi\":\"10.1007/s11249-024-01851-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Repeated single cavitation bubble experiments were performed primarily on 316L stainless steel, and some on nickel–aluminum–bronze (NAB) and pure aluminum. The bubble dynamics were recorded with two high-speed cameras and correlated with surface images, also acquired in situ. These experiments were performed for a range of stand-off distances <i>γ</i> (the ratio of the distance of the solid surface from the bubble to the bubble’s maximum radius) from 0.3 to 2.15. For all stand-off distances, single pits were the only surface change detected at the beginning of damage formation. Later phases of the collapse are not axisymmetric but show regions of “stronger” collapse, and the pits occur on the material underneath those regions. For <i>γ</i> &lt; 0.4, the damage is attributed to the second collapse. For <i>γ</i> &gt; 0.4, the first bubble collapse is most likely responsible for pitting. Shock-wave emission was detected from the collapse regions that were linked to the damage. On 316L, the pitting rate was found to be linearly dependent on the bubble radius, indicating a non-zero lower limit for the bubble radius below which pits do not occur. In terms of stand-off distance, the pitting rate (defined here as average pits per bubble) was non-monotonic, with maxima for bubbles initiated closest to the sample (<i>γ</i> = 0.3) and at <i>γ</i> = 1.4.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-024-01851-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01851-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01851-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

主要在 316L 不锈钢上重复进行了单个空化气泡实验,部分实验在镍铝青铜(NAB)和纯铝上进行。气泡动态由两台高速摄像机记录,并与现场获取的表面图像相关联。这些实验是在 0.3 至 2.15 的间距 γ(固体表面到气泡的距离与气泡最大半径之比)范围内进行的。在所有间距下,单个凹坑是在损伤形成初期检测到的唯一表面变化。塌陷的后期阶段不是轴对称的,而是出现 "更强 "的塌陷区域,凹坑出现在这些区域下面的材料上。对于 γ <0.4,损坏归因于第二次坍塌。对于 γ >0.4,点蚀很可能是由第一次气泡坍塌造成的。在与损坏有关的塌陷区域检测到了冲击波发射。在 316L 上,发现点蚀率与气泡半径呈线性关系,这表明气泡半径的下限不为零,低于该值就不会出现点蚀。就隔离距离而言,点蚀率(此处定义为每个气泡的平均点蚀率)是非单调的,最靠近样品的气泡(γ = 0.3)和γ = 1.4时的点蚀率最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-Bubble Cavitation-Induced Pitting on Technical Alloys

Single-Bubble Cavitation-Induced Pitting on Technical Alloys

Repeated single cavitation bubble experiments were performed primarily on 316L stainless steel, and some on nickel–aluminum–bronze (NAB) and pure aluminum. The bubble dynamics were recorded with two high-speed cameras and correlated with surface images, also acquired in situ. These experiments were performed for a range of stand-off distances γ (the ratio of the distance of the solid surface from the bubble to the bubble’s maximum radius) from 0.3 to 2.15. For all stand-off distances, single pits were the only surface change detected at the beginning of damage formation. Later phases of the collapse are not axisymmetric but show regions of “stronger” collapse, and the pits occur on the material underneath those regions. For γ < 0.4, the damage is attributed to the second collapse. For γ > 0.4, the first bubble collapse is most likely responsible for pitting. Shock-wave emission was detected from the collapse regions that were linked to the damage. On 316L, the pitting rate was found to be linearly dependent on the bubble radius, indicating a non-zero lower limit for the bubble radius below which pits do not occur. In terms of stand-off distance, the pitting rate (defined here as average pits per bubble) was non-monotonic, with maxima for bubbles initiated closest to the sample (γ = 0.3) and at γ = 1.4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信