{"title":"技术合金上的单气泡空化诱发点蚀","authors":"Jonas Kühlmann, Sebastian A. Kaiser","doi":"10.1007/s11249-024-01851-7","DOIUrl":null,"url":null,"abstract":"<div><p>Repeated single cavitation bubble experiments were performed primarily on 316L stainless steel, and some on nickel–aluminum–bronze (NAB) and pure aluminum. The bubble dynamics were recorded with two high-speed cameras and correlated with surface images, also acquired in situ. These experiments were performed for a range of stand-off distances <i>γ</i> (the ratio of the distance of the solid surface from the bubble to the bubble’s maximum radius) from 0.3 to 2.15. For all stand-off distances, single pits were the only surface change detected at the beginning of damage formation. Later phases of the collapse are not axisymmetric but show regions of “stronger” collapse, and the pits occur on the material underneath those regions. For <i>γ</i> < 0.4, the damage is attributed to the second collapse. For <i>γ</i> > 0.4, the first bubble collapse is most likely responsible for pitting. Shock-wave emission was detected from the collapse regions that were linked to the damage. On 316L, the pitting rate was found to be linearly dependent on the bubble radius, indicating a non-zero lower limit for the bubble radius below which pits do not occur. In terms of stand-off distance, the pitting rate (defined here as average pits per bubble) was non-monotonic, with maxima for bubbles initiated closest to the sample (<i>γ</i> = 0.3) and at <i>γ</i> = 1.4.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01851-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Single-Bubble Cavitation-Induced Pitting on Technical Alloys\",\"authors\":\"Jonas Kühlmann, Sebastian A. Kaiser\",\"doi\":\"10.1007/s11249-024-01851-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Repeated single cavitation bubble experiments were performed primarily on 316L stainless steel, and some on nickel–aluminum–bronze (NAB) and pure aluminum. The bubble dynamics were recorded with two high-speed cameras and correlated with surface images, also acquired in situ. These experiments were performed for a range of stand-off distances <i>γ</i> (the ratio of the distance of the solid surface from the bubble to the bubble’s maximum radius) from 0.3 to 2.15. For all stand-off distances, single pits were the only surface change detected at the beginning of damage formation. Later phases of the collapse are not axisymmetric but show regions of “stronger” collapse, and the pits occur on the material underneath those regions. For <i>γ</i> < 0.4, the damage is attributed to the second collapse. For <i>γ</i> > 0.4, the first bubble collapse is most likely responsible for pitting. Shock-wave emission was detected from the collapse regions that were linked to the damage. On 316L, the pitting rate was found to be linearly dependent on the bubble radius, indicating a non-zero lower limit for the bubble radius below which pits do not occur. In terms of stand-off distance, the pitting rate (defined here as average pits per bubble) was non-monotonic, with maxima for bubbles initiated closest to the sample (<i>γ</i> = 0.3) and at <i>γ</i> = 1.4.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"72 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-024-01851-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01851-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01851-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Single-Bubble Cavitation-Induced Pitting on Technical Alloys
Repeated single cavitation bubble experiments were performed primarily on 316L stainless steel, and some on nickel–aluminum–bronze (NAB) and pure aluminum. The bubble dynamics were recorded with two high-speed cameras and correlated with surface images, also acquired in situ. These experiments were performed for a range of stand-off distances γ (the ratio of the distance of the solid surface from the bubble to the bubble’s maximum radius) from 0.3 to 2.15. For all stand-off distances, single pits were the only surface change detected at the beginning of damage formation. Later phases of the collapse are not axisymmetric but show regions of “stronger” collapse, and the pits occur on the material underneath those regions. For γ < 0.4, the damage is attributed to the second collapse. For γ > 0.4, the first bubble collapse is most likely responsible for pitting. Shock-wave emission was detected from the collapse regions that were linked to the damage. On 316L, the pitting rate was found to be linearly dependent on the bubble radius, indicating a non-zero lower limit for the bubble radius below which pits do not occur. In terms of stand-off distance, the pitting rate (defined here as average pits per bubble) was non-monotonic, with maxima for bubbles initiated closest to the sample (γ = 0.3) and at γ = 1.4.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.