Fatemeh Alibabaei-Omran, Ebrahim Zabihi, Alexander M. Seifalian, Nima Javanmehr, Ali Samadikuchaksaraei, Mazaher Gholipourmalekabadi, Mohammad Hossein Asghari, Hamid Reza Nouri, Roghayeh Pourbagher, Zinatossadat Bouzari, Seyedali Seyedmajidi
{"title":"戊二醛和 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺的双边交联:脱细胞人羊膜在组织工程中应用的优化策略","authors":"Fatemeh Alibabaei-Omran, Ebrahim Zabihi, Alexander M. Seifalian, Nima Javanmehr, Ali Samadikuchaksaraei, Mazaher Gholipourmalekabadi, Mohammad Hossein Asghari, Hamid Reza Nouri, Roghayeh Pourbagher, Zinatossadat Bouzari, Seyedali Seyedmajidi","doi":"10.1155/2024/8525930","DOIUrl":null,"url":null,"abstract":"<div>\n <p><i>Introduction</i>. The decellularized human amniotic membrane (dHAM) emerges as a viable 3D scaffold for organ repair and replacement using a tissue engineering strategy. Glutaraldehyde (GTA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) can increase the biomechanical properties of dHAM. However, the crosslinking process is associated with biochemical changes and residual toxic materials, dampening the biocompatibility of the dHAM. From a histologic point of view, each side of the amniotic membrane is biologically different. While the dHAM basement membrane side is rich in growth factors, the stromal side of the dHAM contains more connective tissue matrix (e.g., collagen fibers) which supports its biomechanical properties. Biocompatibility and biomechanical properties are two important challenges in the field of materials science. In this study, for the first time, the stromal and basement membrane side are cross-linked with GTA and EDC, respectively, to optimize the biocompatibility of the treated dHAM while sparing the GTA-mediated biomechanical improvements. <i>Methods</i>. Crosslinking was carried out on dHAM in three groups: EDC, GTA and bilateral treatment with EDC&GTA. Mechanical resistance, degradability, and crosslinking measurements were performed on treated dHAM. The viability of mesenchymal stem cells (MSCs) on the scaffolds was evaluated by the MTT assay. The expression levels of surface markers and images of the MSCs were thoroughly studied. <i>Results</i>. The results obtained showed that bilateral treatment of dHAM with EDC and GTA increased mechanical resistance. Similarly, the evaluation of surface markers revealed that bilaterally treated dHAM sustains the stemness and viability of MSCs at a level equal to that achieved with EDC alone. The SEM images indicated that the MSCs maintained adhesion on EDC&GTA-cross-linked dHAM. <i>Conclusion</i>. The current study explores a pioneering treatment of dHAM, a material long recognized for its regenerative properties, in a novel context. This research delves into the utilization of dHAM cross-linked with EDC&GTA, demonstrating its optimized efficacy in tissue engineering. The enhanced crosslinking technique significantly alters the membrane’s properties, amplifying its durability and therapeutic potential. In this novel bilateral treatment strategy (EDC and GTA), improving mechanical properties by GTA on the stromal surface and maintaining the biocompatibility of EDC on the side of the basement membrane of dHAM had been attained together. By investigating the handling and impact of this cross-linked membrane, this study unveils a new approach in leveraging a well-known material through an innovative process, revolutionizing its application in wound care.</p>\n </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2024 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8525930","citationCount":"0","resultStr":"{\"title\":\"Bilateral Crosslinking with Glutaraldehyde and 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide: An Optimization Strategy for the Application of Decellularized Human Amniotic Membrane in Tissue Engineering\",\"authors\":\"Fatemeh Alibabaei-Omran, Ebrahim Zabihi, Alexander M. Seifalian, Nima Javanmehr, Ali Samadikuchaksaraei, Mazaher Gholipourmalekabadi, Mohammad Hossein Asghari, Hamid Reza Nouri, Roghayeh Pourbagher, Zinatossadat Bouzari, Seyedali Seyedmajidi\",\"doi\":\"10.1155/2024/8525930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p><i>Introduction</i>. The decellularized human amniotic membrane (dHAM) emerges as a viable 3D scaffold for organ repair and replacement using a tissue engineering strategy. Glutaraldehyde (GTA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) can increase the biomechanical properties of dHAM. However, the crosslinking process is associated with biochemical changes and residual toxic materials, dampening the biocompatibility of the dHAM. From a histologic point of view, each side of the amniotic membrane is biologically different. While the dHAM basement membrane side is rich in growth factors, the stromal side of the dHAM contains more connective tissue matrix (e.g., collagen fibers) which supports its biomechanical properties. Biocompatibility and biomechanical properties are two important challenges in the field of materials science. In this study, for the first time, the stromal and basement membrane side are cross-linked with GTA and EDC, respectively, to optimize the biocompatibility of the treated dHAM while sparing the GTA-mediated biomechanical improvements. <i>Methods</i>. Crosslinking was carried out on dHAM in three groups: EDC, GTA and bilateral treatment with EDC&GTA. Mechanical resistance, degradability, and crosslinking measurements were performed on treated dHAM. The viability of mesenchymal stem cells (MSCs) on the scaffolds was evaluated by the MTT assay. The expression levels of surface markers and images of the MSCs were thoroughly studied. <i>Results</i>. The results obtained showed that bilateral treatment of dHAM with EDC and GTA increased mechanical resistance. Similarly, the evaluation of surface markers revealed that bilaterally treated dHAM sustains the stemness and viability of MSCs at a level equal to that achieved with EDC alone. The SEM images indicated that the MSCs maintained adhesion on EDC&GTA-cross-linked dHAM. <i>Conclusion</i>. The current study explores a pioneering treatment of dHAM, a material long recognized for its regenerative properties, in a novel context. This research delves into the utilization of dHAM cross-linked with EDC&GTA, demonstrating its optimized efficacy in tissue engineering. The enhanced crosslinking technique significantly alters the membrane’s properties, amplifying its durability and therapeutic potential. In this novel bilateral treatment strategy (EDC and GTA), improving mechanical properties by GTA on the stromal surface and maintaining the biocompatibility of EDC on the side of the basement membrane of dHAM had been attained together. By investigating the handling and impact of this cross-linked membrane, this study unveils a new approach in leveraging a well-known material through an innovative process, revolutionizing its application in wound care.</p>\\n </div>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8525930\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8525930\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8525930","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bilateral Crosslinking with Glutaraldehyde and 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide: An Optimization Strategy for the Application of Decellularized Human Amniotic Membrane in Tissue Engineering
Introduction. The decellularized human amniotic membrane (dHAM) emerges as a viable 3D scaffold for organ repair and replacement using a tissue engineering strategy. Glutaraldehyde (GTA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) can increase the biomechanical properties of dHAM. However, the crosslinking process is associated with biochemical changes and residual toxic materials, dampening the biocompatibility of the dHAM. From a histologic point of view, each side of the amniotic membrane is biologically different. While the dHAM basement membrane side is rich in growth factors, the stromal side of the dHAM contains more connective tissue matrix (e.g., collagen fibers) which supports its biomechanical properties. Biocompatibility and biomechanical properties are two important challenges in the field of materials science. In this study, for the first time, the stromal and basement membrane side are cross-linked with GTA and EDC, respectively, to optimize the biocompatibility of the treated dHAM while sparing the GTA-mediated biomechanical improvements. Methods. Crosslinking was carried out on dHAM in three groups: EDC, GTA and bilateral treatment with EDC>A. Mechanical resistance, degradability, and crosslinking measurements were performed on treated dHAM. The viability of mesenchymal stem cells (MSCs) on the scaffolds was evaluated by the MTT assay. The expression levels of surface markers and images of the MSCs were thoroughly studied. Results. The results obtained showed that bilateral treatment of dHAM with EDC and GTA increased mechanical resistance. Similarly, the evaluation of surface markers revealed that bilaterally treated dHAM sustains the stemness and viability of MSCs at a level equal to that achieved with EDC alone. The SEM images indicated that the MSCs maintained adhesion on EDC>A-cross-linked dHAM. Conclusion. The current study explores a pioneering treatment of dHAM, a material long recognized for its regenerative properties, in a novel context. This research delves into the utilization of dHAM cross-linked with EDC>A, demonstrating its optimized efficacy in tissue engineering. The enhanced crosslinking technique significantly alters the membrane’s properties, amplifying its durability and therapeutic potential. In this novel bilateral treatment strategy (EDC and GTA), improving mechanical properties by GTA on the stromal surface and maintaining the biocompatibility of EDC on the side of the basement membrane of dHAM had been attained together. By investigating the handling and impact of this cross-linked membrane, this study unveils a new approach in leveraging a well-known material through an innovative process, revolutionizing its application in wound care.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.