{"title":"优化使用高压冷冻法制备横截面水凝胶的方法。","authors":"Shuichi Ichihashi, Masahiko Kuwata, Kodai Kikuchi, Tatsushi Matsuyama, Akio Shimizu","doi":"10.1093/jmicro/dfae020","DOIUrl":null,"url":null,"abstract":"High-pressure water freeze fracturing (HPWFF) is a method for preparing water-containing samples such as hydrogels for scanning electron microscopy, in which a sample is placed in a divisible pressure vessel, filled with water, sealed, frozen with liquid nitrogen, then vacuum dried after the vessel is divided. The pressure (about 200 MPa) generated by the phase transition from water to ice is expected to inhibit ice crystal formation that causes large deformation of microstructure in the sample. To maximize the useable sample size, where SEM observation is not affected by ice crystal growth, preparation conditions including the size of pressure vessel were examined in this work. Using pressure vessels 8.0 mm, 5.5 mm and 4.5 mm in diameter, agarose gel, gelatin gel, wheat starch hydrogel, wheat flour noodle and cellulose hydrogel were used to prepare SEM samples. With agarose gel, an area of 3.6 mm in diameter in the 5.5 mm vessel was achieved as the maximum size of the area observable without ice crystal growth. The observable size of other samples was comparable, except for gelatin gel. As a result, observation of the three-dimensional network structure of hydrogels could be performed over a wider range than with the conventional method without shredding or chemical treatment of the samples. Additionally, usability of agarose gel for sample support matrix in HPWFF was demonstrated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of method for cross section hydrogels preparation using high-pressure freezing.\",\"authors\":\"Shuichi Ichihashi, Masahiko Kuwata, Kodai Kikuchi, Tatsushi Matsuyama, Akio Shimizu\",\"doi\":\"10.1093/jmicro/dfae020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-pressure water freeze fracturing (HPWFF) is a method for preparing water-containing samples such as hydrogels for scanning electron microscopy, in which a sample is placed in a divisible pressure vessel, filled with water, sealed, frozen with liquid nitrogen, then vacuum dried after the vessel is divided. The pressure (about 200 MPa) generated by the phase transition from water to ice is expected to inhibit ice crystal formation that causes large deformation of microstructure in the sample. To maximize the useable sample size, where SEM observation is not affected by ice crystal growth, preparation conditions including the size of pressure vessel were examined in this work. Using pressure vessels 8.0 mm, 5.5 mm and 4.5 mm in diameter, agarose gel, gelatin gel, wheat starch hydrogel, wheat flour noodle and cellulose hydrogel were used to prepare SEM samples. With agarose gel, an area of 3.6 mm in diameter in the 5.5 mm vessel was achieved as the maximum size of the area observable without ice crystal growth. The observable size of other samples was comparable, except for gelatin gel. As a result, observation of the three-dimensional network structure of hydrogels could be performed over a wider range than with the conventional method without shredding or chemical treatment of the samples. Additionally, usability of agarose gel for sample support matrix in HPWFF was demonstrated.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfae020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
高压水冷冻断裂法(HPWFF)是一种用于制备扫描电子显微镜所需的含水样品(如水凝胶)的方法,该方法是将样品置于可分割的压力容器中,注入水,密封,用液氮冷冻,然后在分割容器后进行真空干燥。从水到冰的相变所产生的压力(约 200 兆帕)有望抑制冰晶的形成,而冰晶的形成会导致样品微观结构的巨大变形。为了尽量增大可使用的样品尺寸,使 SEM 观察不受冰晶生长的影响,这项工作研究了包括压力容器尺寸在内的制备条件。使用直径分别为 8.0 毫米、5.5 毫米和 4.5 毫米的压力容器制备了琼脂糖凝胶、明胶、小麦淀粉水凝胶、小麦粉面条和纤维素水凝胶 SEM 样品。使用琼脂糖凝胶时,5.5 毫米容器中直径为 3.6 毫米的区域是在没有冰晶生长的情况下可观察到的最大区域。除明胶凝胶外,其他样品的可观察面积大小相当。因此,与传统方法相比,水凝胶三维网络结构的观测范围更广,无需粉碎样品或对样品进行化学处理。此外,还证明了在 HPWFF 中使用琼脂糖凝胶作为样品支撑基质的可行性。
Optimization of method for cross section hydrogels preparation using high-pressure freezing.
High-pressure water freeze fracturing (HPWFF) is a method for preparing water-containing samples such as hydrogels for scanning electron microscopy, in which a sample is placed in a divisible pressure vessel, filled with water, sealed, frozen with liquid nitrogen, then vacuum dried after the vessel is divided. The pressure (about 200 MPa) generated by the phase transition from water to ice is expected to inhibit ice crystal formation that causes large deformation of microstructure in the sample. To maximize the useable sample size, where SEM observation is not affected by ice crystal growth, preparation conditions including the size of pressure vessel were examined in this work. Using pressure vessels 8.0 mm, 5.5 mm and 4.5 mm in diameter, agarose gel, gelatin gel, wheat starch hydrogel, wheat flour noodle and cellulose hydrogel were used to prepare SEM samples. With agarose gel, an area of 3.6 mm in diameter in the 5.5 mm vessel was achieved as the maximum size of the area observable without ice crystal growth. The observable size of other samples was comparable, except for gelatin gel. As a result, observation of the three-dimensional network structure of hydrogels could be performed over a wider range than with the conventional method without shredding or chemical treatment of the samples. Additionally, usability of agarose gel for sample support matrix in HPWFF was demonstrated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.