三维第一个卷曲特征值的最佳凸域

IF 1.2 2区 数学 Q1 MATHEMATICS
A. Enciso, Wadim Gerner, D. Peralta-Salas
{"title":"三维第一个卷曲特征值的最佳凸域","authors":"A. Enciso, Wadim Gerner, D. Peralta-Salas","doi":"10.1090/tran/8914","DOIUrl":null,"url":null,"abstract":"<p>We prove that there exists a bounded convex domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω</mml:mi>\n <mml:mo>⊂</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\subset \\mathbb {R}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of fixed volume that minimizes the first positive curl eigenvalue among all other bounded convex domains of the same volume. We show that this optimal domain cannot be analytic, and that it cannot be stably convex if it is sufficiently smooth (e.g., of class <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 comma 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{1,1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). Existence results for uniformly Hölder optimal domains in a box (that is, contained in a fixed bounded domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D subset-of double-struck upper R cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>D</mml:mi>\n <mml:mo>⊂</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">D\\subset \\mathbb {R}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) are also presented.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convex domains for the first curl eigenvalue in dimension three\",\"authors\":\"A. Enciso, Wadim Gerner, D. Peralta-Salas\",\"doi\":\"10.1090/tran/8914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that there exists a bounded convex domain <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega subset-of double-struck upper R cubed\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi>\\n <mml:mo>⊂</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega \\\\subset \\\\mathbb {R}^3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of fixed volume that minimizes the first positive curl eigenvalue among all other bounded convex domains of the same volume. We show that this optimal domain cannot be analytic, and that it cannot be stably convex if it is sufficiently smooth (e.g., of class <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript 1 comma 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{1,1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>). Existence results for uniformly Hölder optimal domains in a box (that is, contained in a fixed bounded domain <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D subset-of double-struck upper R cubed\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>D</mml:mi>\\n <mml:mo>⊂</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">D\\\\subset \\\\mathbb {R}^3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) are also presented.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8914\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/8914","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明存在一个固定体积的有界凸域 Ω ⊂ R 3 \Omega \subset \mathbb {R}^3,它在所有其他相同体积的有界凸域中最小化第一个正卷积特征值。我们证明了这个最优域不可能是解析的,而且如果它足够光滑(例如,类 C 1 , 1 C^{1,1} ),它就不可能是稳定凸的。我们还给出了盒中均匀霍尔德最优域(即包含在一个固定有界域 D ⊂ R 3 D\subset \mathbb {R}^3 中)的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convex domains for the first curl eigenvalue in dimension three

We prove that there exists a bounded convex domain Ω R 3 \Omega \subset \mathbb {R}^3 of fixed volume that minimizes the first positive curl eigenvalue among all other bounded convex domains of the same volume. We show that this optimal domain cannot be analytic, and that it cannot be stably convex if it is sufficiently smooth (e.g., of class C 1 , 1 C^{1,1} ). Existence results for uniformly Hölder optimal domains in a box (that is, contained in a fixed bounded domain D R 3 D\subset \mathbb {R}^3 ) are also presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信