William M. Gallagher, Christine McCaffrey, C. Jahangir, Clodagh Murphy, Caoimbhe Burke, Arman Rahman
{"title":"数字组织病理学中的人工智能用于预测乳腺癌患者的预后和治疗效果。","authors":"William M. Gallagher, Christine McCaffrey, C. Jahangir, Clodagh Murphy, Caoimbhe Burke, Arman Rahman","doi":"10.1080/14737159.2024.2346545","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\nHistological images contain phenotypic information predictive of patient outcomes. Due to the heavy workload of pathologists, the time-consuming nature of quantitatively assessing histological features, and human eye limitations to recognize spatial patterns, manually extracting prognostic information in routine pathological workflows remains challenging. Digital pathology has facilitated the mining and quantification of these features utilizing whole-slide image (WSI) scanners and artificial intelligence (AI) algorithms. AI algorithms to identify image-based biomarkers from the tumor microenvironment (TME) have the potential to revolutionize the field of oncology, reducing delays between diagnosis and prognosis determination, allowing for rapid stratification of patients and prescription of optimal treatment regimes, thereby improving patient outcomes.\n\n\nAREAS COVERED\nIn this review, the authors discuss how AI algorithms and digital pathology can predict breast cancer patient prognosis and treatment outcomes using image-based biomarkers, along with the challenges of adopting this technology in clinical settings.\n\n\nEXPERT OPINION\nThe integration of AI and digital pathology presents significant potential for analyzing the TME and its diagnostic, prognostic, and predictive value in breast cancer patients. Widespread clinical adoption of AI faces ethical, regulatory, and technical challenges, although prospective trials may offer reassurance and promote uptake, ultimately improving patient outcomes by reducing diagnosis-to-prognosis delivery delays.","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Digital Histopathology for predicting patient prognosis and treatment efficacy in breast cancer.\",\"authors\":\"William M. Gallagher, Christine McCaffrey, C. Jahangir, Clodagh Murphy, Caoimbhe Burke, Arman Rahman\",\"doi\":\"10.1080/14737159.2024.2346545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION\\nHistological images contain phenotypic information predictive of patient outcomes. Due to the heavy workload of pathologists, the time-consuming nature of quantitatively assessing histological features, and human eye limitations to recognize spatial patterns, manually extracting prognostic information in routine pathological workflows remains challenging. Digital pathology has facilitated the mining and quantification of these features utilizing whole-slide image (WSI) scanners and artificial intelligence (AI) algorithms. AI algorithms to identify image-based biomarkers from the tumor microenvironment (TME) have the potential to revolutionize the field of oncology, reducing delays between diagnosis and prognosis determination, allowing for rapid stratification of patients and prescription of optimal treatment regimes, thereby improving patient outcomes.\\n\\n\\nAREAS COVERED\\nIn this review, the authors discuss how AI algorithms and digital pathology can predict breast cancer patient prognosis and treatment outcomes using image-based biomarkers, along with the challenges of adopting this technology in clinical settings.\\n\\n\\nEXPERT OPINION\\nThe integration of AI and digital pathology presents significant potential for analyzing the TME and its diagnostic, prognostic, and predictive value in breast cancer patients. Widespread clinical adoption of AI faces ethical, regulatory, and technical challenges, although prospective trials may offer reassurance and promote uptake, ultimately improving patient outcomes by reducing diagnosis-to-prognosis delivery delays.\",\"PeriodicalId\":12113,\"journal\":{\"name\":\"Expert Review of Molecular Diagnostics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14737159.2024.2346545\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14737159.2024.2346545","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Artificial Intelligence in Digital Histopathology for predicting patient prognosis and treatment efficacy in breast cancer.
INTRODUCTION
Histological images contain phenotypic information predictive of patient outcomes. Due to the heavy workload of pathologists, the time-consuming nature of quantitatively assessing histological features, and human eye limitations to recognize spatial patterns, manually extracting prognostic information in routine pathological workflows remains challenging. Digital pathology has facilitated the mining and quantification of these features utilizing whole-slide image (WSI) scanners and artificial intelligence (AI) algorithms. AI algorithms to identify image-based biomarkers from the tumor microenvironment (TME) have the potential to revolutionize the field of oncology, reducing delays between diagnosis and prognosis determination, allowing for rapid stratification of patients and prescription of optimal treatment regimes, thereby improving patient outcomes.
AREAS COVERED
In this review, the authors discuss how AI algorithms and digital pathology can predict breast cancer patient prognosis and treatment outcomes using image-based biomarkers, along with the challenges of adopting this technology in clinical settings.
EXPERT OPINION
The integration of AI and digital pathology presents significant potential for analyzing the TME and its diagnostic, prognostic, and predictive value in breast cancer patients. Widespread clinical adoption of AI faces ethical, regulatory, and technical challenges, although prospective trials may offer reassurance and promote uptake, ultimately improving patient outcomes by reducing diagnosis-to-prognosis delivery delays.
期刊介绍:
Expert Review of Molecular Diagnostics (ISSN 1473-7159) publishes expert reviews of the latest advancements in the field of molecular diagnostics including the detection and monitoring of the molecular causes of disease that are being translated into groundbreaking diagnostic and prognostic technologies to be used in the clinical diagnostic setting.
Each issue of Expert Review of Molecular Diagnostics contains leading reviews on current and emerging topics relating to molecular diagnostics, subject to a rigorous peer review process; editorials discussing contentious issues in the field; diagnostic profiles featuring independent, expert evaluations of diagnostic tests; meeting reports of recent molecular diagnostics conferences and key paper evaluations featuring assessments of significant, recently published articles from specialists in molecular diagnostic therapy.
Expert Review of Molecular Diagnostics provides the forum for reporting the critical advances being made in this ever-expanding field, as well as the major challenges ahead in their clinical implementation. The journal delivers this information in concise, at-a-glance article formats: invaluable to a time-constrained community.