{"title":"全非线性抛物线薄障碍物问题中的自由边界正则性","authors":"Xi Hu, Lin Tang","doi":"10.1515/acv-2023-0126","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We study the regularity of the free boundary in the fully nonlinear parabolic thin obstacle problem.\nUnder the assumption of time semiconvexity, our main result establishes that the free boundary is a <jats:inline-formula id=\"j_acv-2023-0126_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>C</m:mi>\n <m:mn>1</m:mn>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0126_eq_0100.png\" />\n <jats:tex-math>C^{1}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> graph in <jats:italic>x</jats:italic> near any regular free boundary point.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free boundary regularity in the fully nonlinear parabolic thin obstacle problem\",\"authors\":\"Xi Hu, Lin Tang\",\"doi\":\"10.1515/acv-2023-0126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>We study the regularity of the free boundary in the fully nonlinear parabolic thin obstacle problem.\\nUnder the assumption of time semiconvexity, our main result establishes that the free boundary is a <jats:inline-formula id=\\\"j_acv-2023-0126_ineq_9999\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi>C</m:mi>\\n <m:mn>1</m:mn>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_acv-2023-0126_eq_0100.png\\\" />\\n <jats:tex-math>C^{1}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> graph in <jats:italic>x</jats:italic> near any regular free boundary point.</jats:p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2023-0126\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0126","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了全非线性抛物线薄障碍物问题中自由边界的正则性。在时间半凸假设下,我们的主要结果确定了自由边界是任何正则自由边界点附近 x 中的 C 1 C^{1} 图。
Free boundary regularity in the fully nonlinear parabolic thin obstacle problem
We study the regularity of the free boundary in the fully nonlinear parabolic thin obstacle problem.
Under the assumption of time semiconvexity, our main result establishes that the free boundary is a C1C^{1} graph in x near any regular free boundary point.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.