金属氧化物@碳复合材料自旋调节的类芬顿催化非自由基氧化作用

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bofeng Li, Ya Liu, Kunsheng Hu, Qin Dai, Chunmao Chen, Xiaoguang Duan, Shaobin Wang, Yuxian Wang
{"title":"金属氧化物@碳复合材料自旋调节的类芬顿催化非自由基氧化作用","authors":"Bofeng Li,&nbsp;Ya Liu,&nbsp;Kunsheng Hu,&nbsp;Qin Dai,&nbsp;Chunmao Chen,&nbsp;Xiaoguang Duan,&nbsp;Shaobin Wang,&nbsp;Yuxian Wang","doi":"10.1002/adfm.202401397","DOIUrl":null,"url":null,"abstract":"<p>The spin state of the transition metal species (TMs) has been recognized as a critical descriptor in Fenton-like catalysis. The raised spin state of dispersed TMs in carbon will enhance the redox processes with adsorbed peroxides and improve the oxidation performance. Nevertheless, establishing the spin-activity correlations for the encapsulated TM nanoparticles remains challenging because of the difficulties in fine-tuning the spin state of TM species and the insufficient understanding of orbital hybridization states upon interaction with peroxides. Here, the advantage of the fast-temperature heating/quenching of microwave thermal shock is taken to engineer the structure and spin state of encapsulated TMs within the N-doped graphitic carbons. The reduced TMs particle size and enhanced TMs-carbon coupling increase surface entropy and regulate <i>e</i><sub>g</sub> electron filling of the high-spin TM-N coordination, endowing electrons with high mobility and facilitating peroxymonosulfate (PMS) adsorption. The strong interactions further uplift the PMS O 2p band position toward the Fermi level and thus elevate the oxidation potential of surface-activated PMS (PMS<sup>*</sup>) as the dominant nonradical species for pollutant degradation. The deciphered orbital hybridizations of engineered high-spin TM and PMS enlighten the smart design of spin-regulated nanocomposites for advanced water purification.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 36","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-Regulated Fenton-Like Catalysis for Nonradical Oxidation over Metal Oxide@Carbon Composites\",\"authors\":\"Bofeng Li,&nbsp;Ya Liu,&nbsp;Kunsheng Hu,&nbsp;Qin Dai,&nbsp;Chunmao Chen,&nbsp;Xiaoguang Duan,&nbsp;Shaobin Wang,&nbsp;Yuxian Wang\",\"doi\":\"10.1002/adfm.202401397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The spin state of the transition metal species (TMs) has been recognized as a critical descriptor in Fenton-like catalysis. The raised spin state of dispersed TMs in carbon will enhance the redox processes with adsorbed peroxides and improve the oxidation performance. Nevertheless, establishing the spin-activity correlations for the encapsulated TM nanoparticles remains challenging because of the difficulties in fine-tuning the spin state of TM species and the insufficient understanding of orbital hybridization states upon interaction with peroxides. Here, the advantage of the fast-temperature heating/quenching of microwave thermal shock is taken to engineer the structure and spin state of encapsulated TMs within the N-doped graphitic carbons. The reduced TMs particle size and enhanced TMs-carbon coupling increase surface entropy and regulate <i>e</i><sub>g</sub> electron filling of the high-spin TM-N coordination, endowing electrons with high mobility and facilitating peroxymonosulfate (PMS) adsorption. The strong interactions further uplift the PMS O 2p band position toward the Fermi level and thus elevate the oxidation potential of surface-activated PMS (PMS<sup>*</sup>) as the dominant nonradical species for pollutant degradation. The deciphered orbital hybridizations of engineered high-spin TM and PMS enlighten the smart design of spin-regulated nanocomposites for advanced water purification.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 36\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202401397\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202401397","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属物种(TMs)的自旋态被认为是芬顿催化过程中的一个关键描述因子。碳中分散的 TMs 的自旋态升高将增强与吸附的过氧化物的氧化还原过程,并改善氧化性能。然而,由于难以微调 TM 物种的自旋态,以及对其与过氧化物相互作用时的轨道杂化状态了解不足,因此建立封装 TM 纳米粒子的自旋-活性相关性仍然具有挑战性。在此,我们利用微波热冲击快速升温/淬火的优势,在掺杂 N 的石墨碳中设计封装 TM 的结构和自旋态。TMs 粒径的减小和 TMs 与碳耦合的增强增加了表面熵,并调节了高自旋 TM-N 配位的电子填充,从而赋予电子高流动性并促进了过硫酸盐(PMS)的吸附。强相互作用进一步将 PMS O 2p 带位置提升到费米级,从而提高了表面活性 PMS(PMS*)的氧化潜能,使其成为降解污染物的主要非自由基物种。对工程高自旋 TM 和 PMS 轨道杂化的解密,为设计用于先进水净化的自旋调节纳米复合材料提供了启迪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spin-Regulated Fenton-Like Catalysis for Nonradical Oxidation over Metal Oxide@Carbon Composites

Spin-Regulated Fenton-Like Catalysis for Nonradical Oxidation over Metal Oxide@Carbon Composites

Spin-Regulated Fenton-Like Catalysis for Nonradical Oxidation over Metal Oxide@Carbon Composites

The spin state of the transition metal species (TMs) has been recognized as a critical descriptor in Fenton-like catalysis. The raised spin state of dispersed TMs in carbon will enhance the redox processes with adsorbed peroxides and improve the oxidation performance. Nevertheless, establishing the spin-activity correlations for the encapsulated TM nanoparticles remains challenging because of the difficulties in fine-tuning the spin state of TM species and the insufficient understanding of orbital hybridization states upon interaction with peroxides. Here, the advantage of the fast-temperature heating/quenching of microwave thermal shock is taken to engineer the structure and spin state of encapsulated TMs within the N-doped graphitic carbons. The reduced TMs particle size and enhanced TMs-carbon coupling increase surface entropy and regulate eg electron filling of the high-spin TM-N coordination, endowing electrons with high mobility and facilitating peroxymonosulfate (PMS) adsorption. The strong interactions further uplift the PMS O 2p band position toward the Fermi level and thus elevate the oxidation potential of surface-activated PMS (PMS*) as the dominant nonradical species for pollutant degradation. The deciphered orbital hybridizations of engineered high-spin TM and PMS enlighten the smart design of spin-regulated nanocomposites for advanced water purification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信