Lingfei Xu, Xihui Tang, Long Yang, Min Chang, Yuqing Xu, Qingsong Chen, Chen Lu, Su Liu, Jinhong Jiang
{"title":"通过诱导 AMPK/PGC-1α 介导的线粒体生物生成,MOTS-c 是治疗链脲佐菌素诱导的糖尿病痛性神经病变的有效靶点。","authors":"Lingfei Xu, Xihui Tang, Long Yang, Min Chang, Yuqing Xu, Qingsong Chen, Chen Lu, Su Liu, Jinhong Jiang","doi":"10.1177/17448069241252654","DOIUrl":null,"url":null,"abstract":"Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. MOTS-c, a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an AMPK inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"15 6","pages":"17448069241252654"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOTS-c is an effective target for treating streptozotocin induced painful diabetic neuropathy through induction of AMPK/PGC-1α -mediated mitochondrial biogenesis.\",\"authors\":\"Lingfei Xu, Xihui Tang, Long Yang, Min Chang, Yuqing Xu, Qingsong Chen, Chen Lu, Su Liu, Jinhong Jiang\",\"doi\":\"10.1177/17448069241252654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. MOTS-c, a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an AMPK inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"15 6\",\"pages\":\"17448069241252654\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069241252654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069241252654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
MOTS-c is an effective target for treating streptozotocin induced painful diabetic neuropathy through induction of AMPK/PGC-1α -mediated mitochondrial biogenesis.
Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. MOTS-c, a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an AMPK inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.