{"title":"使用人工神经网络方法估算添加式制造的再生 ABS 零件的摩擦和磨损特性:层厚、填充率和构建方向的影响","authors":"Ç. Bolat, Abdulkadir Cebi, Sarp Çoban, B. Ergene","doi":"10.1515/ipp-2023-4481","DOIUrl":null,"url":null,"abstract":"\n This investigation aims to elucidate friction and wear features of additively manufactured recycled-ABS components by utilizing neural network algorithms. In that sense, it is the first initiative in the technical literature and brings fused deposition modeling (FDM) technology, recycled filament-based products, and artificial neural network strategies together to estimate the friction coefficient and volume loss outcomes. In the experimental stage, to provide the required data for five different neural algorithms, dry-sliding wear tests, and hardness measurements were conducted. As FDM printing variables, layer thickness (0.1, 0.2, and 0.3 mm), infill rate (40, 70, and 100 %), and building direction (vertical, and horizontal) were selected. The obtained results pointed out that vertically built samples usually had lower wear resistance than the horizontally built samples. This case can be clarified with the initially measured hardness levels of horizontally built samples and optical microscopic analyses. Besides, the Levenberg Marquard (LM) algorithm was the best option to foresee the wear outputs compared to other approaches. Considering all error levels in this paper, the offered results by neural networks are notably acceptable for the real industrial usage of material, mechanical, and manufacturing engineering areas.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of friction and wear properties of additively manufactured recycled-ABS parts using artificial neural network approach: effects of layer thickness, infill rate, and building direction\",\"authors\":\"Ç. Bolat, Abdulkadir Cebi, Sarp Çoban, B. Ergene\",\"doi\":\"10.1515/ipp-2023-4481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This investigation aims to elucidate friction and wear features of additively manufactured recycled-ABS components by utilizing neural network algorithms. In that sense, it is the first initiative in the technical literature and brings fused deposition modeling (FDM) technology, recycled filament-based products, and artificial neural network strategies together to estimate the friction coefficient and volume loss outcomes. In the experimental stage, to provide the required data for five different neural algorithms, dry-sliding wear tests, and hardness measurements were conducted. As FDM printing variables, layer thickness (0.1, 0.2, and 0.3 mm), infill rate (40, 70, and 100 %), and building direction (vertical, and horizontal) were selected. The obtained results pointed out that vertically built samples usually had lower wear resistance than the horizontally built samples. This case can be clarified with the initially measured hardness levels of horizontally built samples and optical microscopic analyses. Besides, the Levenberg Marquard (LM) algorithm was the best option to foresee the wear outputs compared to other approaches. Considering all error levels in this paper, the offered results by neural networks are notably acceptable for the real industrial usage of material, mechanical, and manufacturing engineering areas.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2023-4481\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4481","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Estimation of friction and wear properties of additively manufactured recycled-ABS parts using artificial neural network approach: effects of layer thickness, infill rate, and building direction
This investigation aims to elucidate friction and wear features of additively manufactured recycled-ABS components by utilizing neural network algorithms. In that sense, it is the first initiative in the technical literature and brings fused deposition modeling (FDM) technology, recycled filament-based products, and artificial neural network strategies together to estimate the friction coefficient and volume loss outcomes. In the experimental stage, to provide the required data for five different neural algorithms, dry-sliding wear tests, and hardness measurements were conducted. As FDM printing variables, layer thickness (0.1, 0.2, and 0.3 mm), infill rate (40, 70, and 100 %), and building direction (vertical, and horizontal) were selected. The obtained results pointed out that vertically built samples usually had lower wear resistance than the horizontally built samples. This case can be clarified with the initially measured hardness levels of horizontally built samples and optical microscopic analyses. Besides, the Levenberg Marquard (LM) algorithm was the best option to foresee the wear outputs compared to other approaches. Considering all error levels in this paper, the offered results by neural networks are notably acceptable for the real industrial usage of material, mechanical, and manufacturing engineering areas.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.