碳/钴混合纤维增强环氧-卤化萘复合材料的弹道性能

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fatma Bakal Gumus, A. Yapici
{"title":"碳/钴混合纤维增强环氧-卤化萘复合材料的弹道性能","authors":"Fatma Bakal Gumus, A. Yapici","doi":"10.1177/00219983241249707","DOIUrl":null,"url":null,"abstract":"Ballistic behaviours of hybrid composite armors were investigated through experiments. The effects of hexagonal boron nitride (h-BN) nanopowders and number of layers on ballistic performance were examined. Four types of armors were manufactured by hand lay-up and vacuum bagging technique: 60 layers of fabric (30 layers carbon and 30 layers basalt fabrics) with 0% h-BN (1-A) and 1% h-BN (1-B), also 100 layers of fabric (50 layers carbon and 50 layers basalt fabrics) with 0% h-BN (2-A) and 1% h-BN (2-B) with epoxy resin. Ballistic impact tests were performed on the armors using a 9 mm full metal jacket projectile. The densities of the ballistic plates are 1.53, 1.56, 1.61 and 1.65 respectively. After three shots to each plate, the average hole depths were 5.55 mm on the 1-A coded plate, 4.34 mm on the 1-B armor, 4.68 mm on the 2-A plate, and 4.69 mm on the 2-B armor. All of the armors were able to confront for the velocities between [Formula: see text] m/s successfully. However, the h-BN showed a significant influence on the overall ballistic performance of composite armors. It has been found that the penetration depth decreases with the addition of h-BN. Also SEM-EDS mapping and XRD analysis were used to characterize the hybrid composites.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"114 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ballistic behaviour of hybride carbon/basalt fiber reinforced epoxy-hBN composite\",\"authors\":\"Fatma Bakal Gumus, A. Yapici\",\"doi\":\"10.1177/00219983241249707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ballistic behaviours of hybrid composite armors were investigated through experiments. The effects of hexagonal boron nitride (h-BN) nanopowders and number of layers on ballistic performance were examined. Four types of armors were manufactured by hand lay-up and vacuum bagging technique: 60 layers of fabric (30 layers carbon and 30 layers basalt fabrics) with 0% h-BN (1-A) and 1% h-BN (1-B), also 100 layers of fabric (50 layers carbon and 50 layers basalt fabrics) with 0% h-BN (2-A) and 1% h-BN (2-B) with epoxy resin. Ballistic impact tests were performed on the armors using a 9 mm full metal jacket projectile. The densities of the ballistic plates are 1.53, 1.56, 1.61 and 1.65 respectively. After three shots to each plate, the average hole depths were 5.55 mm on the 1-A coded plate, 4.34 mm on the 1-B armor, 4.68 mm on the 2-A plate, and 4.69 mm on the 2-B armor. All of the armors were able to confront for the velocities between [Formula: see text] m/s successfully. However, the h-BN showed a significant influence on the overall ballistic performance of composite armors. It has been found that the penetration depth decreases with the addition of h-BN. Also SEM-EDS mapping and XRD analysis were used to characterize the hybrid composites.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"114 6\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241249707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241249707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

通过实验研究了混合复合材料装甲的弹道行为。实验研究了六方氮化硼(h-BN)纳米粉体和层数对弹道性能的影响。通过手工铺层和真空装袋技术制造了四种类型的装甲:60 层含 0% h-BN (1-A) 和 1% h-BN (1-B) 的织物(30 层碳织物和 30 层玄武岩织物),以及 100 层含 0% h-BN (2-A) 和 1% h-BN (2-B) 的环氧树脂织物(50 层碳织物和 50 层玄武岩织物)。使用 9 毫米全金属护套弹丸对装甲进行了弹道冲击试验。弹道板的密度分别为 1.53、1.56、1.61 和 1.65。对每块防弹板射击三次后,1-A 编码防弹板的平均孔深为 5.55 毫米,1-B 装甲为 4.34 毫米,2-A 防弹板为 4.68 毫米,2-B 装甲为 4.69 毫米。所有装甲都能成功对抗[计算公式:见正文]米/秒之间的速度。不过,h-BN 对复合装甲的整体弹道性能有显著影响。研究发现,h-BN 的加入会降低穿透深度。此外,还使用了 SEM-EDS 制图和 XRD 分析来表征混合复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ballistic behaviour of hybride carbon/basalt fiber reinforced epoxy-hBN composite
Ballistic behaviours of hybrid composite armors were investigated through experiments. The effects of hexagonal boron nitride (h-BN) nanopowders and number of layers on ballistic performance were examined. Four types of armors were manufactured by hand lay-up and vacuum bagging technique: 60 layers of fabric (30 layers carbon and 30 layers basalt fabrics) with 0% h-BN (1-A) and 1% h-BN (1-B), also 100 layers of fabric (50 layers carbon and 50 layers basalt fabrics) with 0% h-BN (2-A) and 1% h-BN (2-B) with epoxy resin. Ballistic impact tests were performed on the armors using a 9 mm full metal jacket projectile. The densities of the ballistic plates are 1.53, 1.56, 1.61 and 1.65 respectively. After three shots to each plate, the average hole depths were 5.55 mm on the 1-A coded plate, 4.34 mm on the 1-B armor, 4.68 mm on the 2-A plate, and 4.69 mm on the 2-B armor. All of the armors were able to confront for the velocities between [Formula: see text] m/s successfully. However, the h-BN showed a significant influence on the overall ballistic performance of composite armors. It has been found that the penetration depth decreases with the addition of h-BN. Also SEM-EDS mapping and XRD analysis were used to characterize the hybrid composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信