模糊分阶高萨特偏微分方程的存在性和唯一性结果

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Muhammad Sarwar, Noor Jamal, K. Abodayeh, C. Promsakon, T. Sitthiwirattham
{"title":"模糊分阶高萨特偏微分方程的存在性和唯一性结果","authors":"Muhammad Sarwar, Noor Jamal, K. Abodayeh, C. Promsakon, T. Sitthiwirattham","doi":"10.3390/fractalfract8050250","DOIUrl":null,"url":null,"abstract":"In this manuscript, we discuss fractional fuzzy Goursat problems with Caputo’s gH-differentiability. The second-order mixed derivative term in Goursat problems and two types of Caputo’s gH-differentiability pose challenges to dealing with Goursat problems. Therefore, in this study, we convert Goursat problems to equivalent systems fuzzy integral equations to deal properly with the mixed derivative term and two types of Caputo’s gH-differentiability. In this study, we utilize the concept of metric fixed point theory to discuss the existence of a unique solution of fractional fuzzy Goursat problems. For the useability of established theoretical work, we provide some numerical problems. We also discuss the solutions to numerical problems by conformable double Laplace transform. To show the validity of the solutions we provide 3D plots. We discuss, as an application, why fractional partial fuzzy differential equations are the generalization of usual partial fuzzy differential equations by providing a suitable reason. Moreover, we show the advantages of the proposed fractional transform over the usual Laplace transform.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Uniqueness Result for Fuzzy Fractional Order Goursat Partial Differential Equations\",\"authors\":\"Muhammad Sarwar, Noor Jamal, K. Abodayeh, C. Promsakon, T. Sitthiwirattham\",\"doi\":\"10.3390/fractalfract8050250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we discuss fractional fuzzy Goursat problems with Caputo’s gH-differentiability. The second-order mixed derivative term in Goursat problems and two types of Caputo’s gH-differentiability pose challenges to dealing with Goursat problems. Therefore, in this study, we convert Goursat problems to equivalent systems fuzzy integral equations to deal properly with the mixed derivative term and two types of Caputo’s gH-differentiability. In this study, we utilize the concept of metric fixed point theory to discuss the existence of a unique solution of fractional fuzzy Goursat problems. For the useability of established theoretical work, we provide some numerical problems. We also discuss the solutions to numerical problems by conformable double Laplace transform. To show the validity of the solutions we provide 3D plots. We discuss, as an application, why fractional partial fuzzy differential equations are the generalization of usual partial fuzzy differential equations by providing a suitable reason. Moreover, we show the advantages of the proposed fractional transform over the usual Laplace transform.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8050250\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050250","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本手稿中,我们讨论了具有卡普托 gH 微分性质的分数模糊 Goursat 问题。Goursat 问题中的二阶混合导数项和两种 Caputo's gH 微分性给 Goursat 问题的处理带来了挑战。因此,在本研究中,我们将 Goursat 问题转换为等价系统模糊积分方程,以正确处理混合导数项和两种卡普托 gH 微分。在本研究中,我们利用度量定点理论的概念来讨论分数模糊 Goursat 问题唯一解的存在性。为了使已建立的理论工作更易于使用,我们提供了一些数值问题。我们还讨论了用保形双拉普拉斯变换解决数值问题的方法。为了显示解法的有效性,我们提供了三维图。作为应用,我们讨论了为什么分数偏模糊微分方程是普通偏模糊微分方程的一般化,并提供了适当的理由。此外,我们还展示了所提出的分数变换相对于普通拉普拉斯变换的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Uniqueness Result for Fuzzy Fractional Order Goursat Partial Differential Equations
In this manuscript, we discuss fractional fuzzy Goursat problems with Caputo’s gH-differentiability. The second-order mixed derivative term in Goursat problems and two types of Caputo’s gH-differentiability pose challenges to dealing with Goursat problems. Therefore, in this study, we convert Goursat problems to equivalent systems fuzzy integral equations to deal properly with the mixed derivative term and two types of Caputo’s gH-differentiability. In this study, we utilize the concept of metric fixed point theory to discuss the existence of a unique solution of fractional fuzzy Goursat problems. For the useability of established theoretical work, we provide some numerical problems. We also discuss the solutions to numerical problems by conformable double Laplace transform. To show the validity of the solutions we provide 3D plots. We discuss, as an application, why fractional partial fuzzy differential equations are the generalization of usual partial fuzzy differential equations by providing a suitable reason. Moreover, we show the advantages of the proposed fractional transform over the usual Laplace transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信