将小型黑洞粘合到初始数据集中

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Peter Hintz
{"title":"将小型黑洞粘合到初始数据集中","authors":"Peter Hintz","doi":"10.1007/s00220-024-04989-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a strong localized gluing result for the general relativistic constraint equations (with or without cosmological constant) in <span>\\(n\\ge 3\\)</span> spatial dimensions. We glue an <span>\\(\\epsilon \\)</span>-rescaling of an asymptotically flat data set <span>\\(({\\hat{\\gamma }},{\\hat{k}})\\)</span> into the neighborhood of a point <span>\\(\\mathfrak {p}\\in X\\)</span> inside of another initial data set <span>\\((X,\\gamma ,k)\\)</span>, under a local genericity condition (non-existence of KIDs) near <span>\\(\\mathfrak {p}\\)</span>. As the scaling parameter <span>\\(\\epsilon \\)</span> tends to 0, the rescalings <span>\\(\\frac{x}{\\epsilon }\\)</span> of normal coordinates <i>x</i> on <i>X</i> around <span>\\(\\mathfrak {p}\\)</span> become asymptotically flat coordinates on the asymptotically flat data set; outside of any neighborhood of <span>\\(\\mathfrak {p}\\)</span> on the other hand, the glued initial data converge back to <span>\\((\\gamma ,k)\\)</span>. The initial data we construct enjoy polyhomogeneous regularity jointly in <span>\\(\\epsilon \\)</span> and the (rescaled) spatial coordinates. Applying our construction to unit mass black hole data sets <span>\\((X,\\gamma ,k)\\)</span> and appropriate boosted Kerr initial data sets <span>\\(({\\hat{\\gamma }},{\\hat{k}})\\)</span> produces initial data which conjecturally evolve into the extreme mass ratio inspiral of a unit mass and a mass <span>\\(\\epsilon \\)</span> black hole. The proof combines a variant of the gluing method introduced by Corvino and Schoen with geometric singular analysis techniques originating in Melrose’s work. On a technical level, we present a fully geometric microlocal treatment of the solvability theory for the linearized constraints map.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-04989-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Gluing Small Black Holes into Initial Data Sets\",\"authors\":\"Peter Hintz\",\"doi\":\"10.1007/s00220-024-04989-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a strong localized gluing result for the general relativistic constraint equations (with or without cosmological constant) in <span>\\\\(n\\\\ge 3\\\\)</span> spatial dimensions. We glue an <span>\\\\(\\\\epsilon \\\\)</span>-rescaling of an asymptotically flat data set <span>\\\\(({\\\\hat{\\\\gamma }},{\\\\hat{k}})\\\\)</span> into the neighborhood of a point <span>\\\\(\\\\mathfrak {p}\\\\in X\\\\)</span> inside of another initial data set <span>\\\\((X,\\\\gamma ,k)\\\\)</span>, under a local genericity condition (non-existence of KIDs) near <span>\\\\(\\\\mathfrak {p}\\\\)</span>. As the scaling parameter <span>\\\\(\\\\epsilon \\\\)</span> tends to 0, the rescalings <span>\\\\(\\\\frac{x}{\\\\epsilon }\\\\)</span> of normal coordinates <i>x</i> on <i>X</i> around <span>\\\\(\\\\mathfrak {p}\\\\)</span> become asymptotically flat coordinates on the asymptotically flat data set; outside of any neighborhood of <span>\\\\(\\\\mathfrak {p}\\\\)</span> on the other hand, the glued initial data converge back to <span>\\\\((\\\\gamma ,k)\\\\)</span>. The initial data we construct enjoy polyhomogeneous regularity jointly in <span>\\\\(\\\\epsilon \\\\)</span> and the (rescaled) spatial coordinates. Applying our construction to unit mass black hole data sets <span>\\\\((X,\\\\gamma ,k)\\\\)</span> and appropriate boosted Kerr initial data sets <span>\\\\(({\\\\hat{\\\\gamma }},{\\\\hat{k}})\\\\)</span> produces initial data which conjecturally evolve into the extreme mass ratio inspiral of a unit mass and a mass <span>\\\\(\\\\epsilon \\\\)</span> black hole. The proof combines a variant of the gluing method introduced by Corvino and Schoen with geometric singular analysis techniques originating in Melrose’s work. On a technical level, we present a fully geometric microlocal treatment of the solvability theory for the linearized constraints map.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-04989-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-04989-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-04989-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一般相对论约束方程(有或没有宇宙常数)在空间维度上的强局部胶合结果。我们将一个渐近平坦数据集 \(({\hat{gamma }},{\hat{k}})) 的重缩放粘合到另一个初始数据集 \((X. \gamma ,k))内部的一个点 \(\mathfrak {p}\in X\) 的邻域中、\附近的局部泛型条件(KID不存在)。当缩放参数 \(\epsilon \)趋于 0 时,X 上 X 的法线坐标 x 在 \(\mathfrak {p}\) 附近的重缩放 \(\frac{x}{\epsilon }\) 就会成为渐近平坦数据集上的渐近平坦坐标;另一方面,在 \(\mathfrak {p}\) 的任何邻域之外,粘合的初始数据会收敛回 \((\gamma,k)\)。我们构建的初始数据在\(\epsilon \)和(重定标)空间坐标中共同享有多均质正则性。将我们的构造应用于单位质量黑洞数据集((X,\gamma ,k)\)和适当的助推克尔初始数据集(({\hat{\gamma }},{\hat{k}}) \)会产生初始数据,这些初始数据推测会演化成单位质量和质量(\epsilon \)黑洞的极端质量比吸积。证明结合了科维诺(Corvino)和舍恩(Schoen)引入的胶合方法的变体以及源自梅尔罗斯(Melrose)工作的几何奇异分析技术。在技术层面上,我们提出了线性化约束图的可解性理论的完全几何微局域处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gluing Small Black Holes into Initial Data Sets

Gluing Small Black Holes into Initial Data Sets

We prove a strong localized gluing result for the general relativistic constraint equations (with or without cosmological constant) in \(n\ge 3\) spatial dimensions. We glue an \(\epsilon \)-rescaling of an asymptotically flat data set \(({\hat{\gamma }},{\hat{k}})\) into the neighborhood of a point \(\mathfrak {p}\in X\) inside of another initial data set \((X,\gamma ,k)\), under a local genericity condition (non-existence of KIDs) near \(\mathfrak {p}\). As the scaling parameter \(\epsilon \) tends to 0, the rescalings \(\frac{x}{\epsilon }\) of normal coordinates x on X around \(\mathfrak {p}\) become asymptotically flat coordinates on the asymptotically flat data set; outside of any neighborhood of \(\mathfrak {p}\) on the other hand, the glued initial data converge back to \((\gamma ,k)\). The initial data we construct enjoy polyhomogeneous regularity jointly in \(\epsilon \) and the (rescaled) spatial coordinates. Applying our construction to unit mass black hole data sets \((X,\gamma ,k)\) and appropriate boosted Kerr initial data sets \(({\hat{\gamma }},{\hat{k}})\) produces initial data which conjecturally evolve into the extreme mass ratio inspiral of a unit mass and a mass \(\epsilon \) black hole. The proof combines a variant of the gluing method introduced by Corvino and Schoen with geometric singular analysis techniques originating in Melrose’s work. On a technical level, we present a fully geometric microlocal treatment of the solvability theory for the linearized constraints map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信