{"title":"探索电离层动态:利用线性函数模型全面分析日相期间全球导航卫星系统 TEC 估计值","authors":"Mallika Yarrakula, Prabakaran Narayanaswamy","doi":"10.1515/jag-2024-0019","DOIUrl":null,"url":null,"abstract":"\n The modeling and forecasting of Total Electron Content (TEC) play a major role in influencing signals from satellite-based navigation systems and impact the performance of diverse satellite-dependent technologies. The intensity of solar ionizing radiation and the state of geomagnetic field activity influence the Global Navigation Satellite System (GNSS)-TEC. This paper uses a Linear TEC Function (LTF) climatology model to understand ionospheric behavior under solar and geomagnetic activities that cause variations in the electron distribution of the ionosphere medium. The LTF model integrates representations of solar EUV photon (MgII) and geomagnetic (SYMH) activities, incorporating solar-modulated oscillations (periodic variations) at four seasonal cycles and a linear trend. The LTF model examined the time series of GPS-TEC at a location (geographic 34.95° N, 134.05° E) with a time resolution of 1 h, from 1997 to 2016, covering solar cycles 23 and 24. The Root Mean Square Deviation (RMSD) and correlation coefficient between the GNSS-TEC and model TEC (LTF) was 5.30 TECU and 95 %. The results indicate that solar components, as well as annual and semi-annual variations, have a significant impact on the daily average TEC. Solar activity appears to be the predominant determining factor of TEC during the solar phases of cycles 23 and 24. In contrast, periodic influences primarily outline TEC during periods characterized by minimal solar activity. The geomagnetic component presents an increased influence, particularly during storm periods. The model demonstrates superior performance in Total TEC modeling compared to other state-of-the-art approaches.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"46 27","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring ionospheric dynamics: a comprehensive analysis of GNSS TEC estimations during the solar phases using linear function model\",\"authors\":\"Mallika Yarrakula, Prabakaran Narayanaswamy\",\"doi\":\"10.1515/jag-2024-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The modeling and forecasting of Total Electron Content (TEC) play a major role in influencing signals from satellite-based navigation systems and impact the performance of diverse satellite-dependent technologies. The intensity of solar ionizing radiation and the state of geomagnetic field activity influence the Global Navigation Satellite System (GNSS)-TEC. This paper uses a Linear TEC Function (LTF) climatology model to understand ionospheric behavior under solar and geomagnetic activities that cause variations in the electron distribution of the ionosphere medium. The LTF model integrates representations of solar EUV photon (MgII) and geomagnetic (SYMH) activities, incorporating solar-modulated oscillations (periodic variations) at four seasonal cycles and a linear trend. The LTF model examined the time series of GPS-TEC at a location (geographic 34.95° N, 134.05° E) with a time resolution of 1 h, from 1997 to 2016, covering solar cycles 23 and 24. The Root Mean Square Deviation (RMSD) and correlation coefficient between the GNSS-TEC and model TEC (LTF) was 5.30 TECU and 95 %. The results indicate that solar components, as well as annual and semi-annual variations, have a significant impact on the daily average TEC. Solar activity appears to be the predominant determining factor of TEC during the solar phases of cycles 23 and 24. In contrast, periodic influences primarily outline TEC during periods characterized by minimal solar activity. The geomagnetic component presents an increased influence, particularly during storm periods. The model demonstrates superior performance in Total TEC modeling compared to other state-of-the-art approaches.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"46 27\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2024-0019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2024-0019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring ionospheric dynamics: a comprehensive analysis of GNSS TEC estimations during the solar phases using linear function model
The modeling and forecasting of Total Electron Content (TEC) play a major role in influencing signals from satellite-based navigation systems and impact the performance of diverse satellite-dependent technologies. The intensity of solar ionizing radiation and the state of geomagnetic field activity influence the Global Navigation Satellite System (GNSS)-TEC. This paper uses a Linear TEC Function (LTF) climatology model to understand ionospheric behavior under solar and geomagnetic activities that cause variations in the electron distribution of the ionosphere medium. The LTF model integrates representations of solar EUV photon (MgII) and geomagnetic (SYMH) activities, incorporating solar-modulated oscillations (periodic variations) at four seasonal cycles and a linear trend. The LTF model examined the time series of GPS-TEC at a location (geographic 34.95° N, 134.05° E) with a time resolution of 1 h, from 1997 to 2016, covering solar cycles 23 and 24. The Root Mean Square Deviation (RMSD) and correlation coefficient between the GNSS-TEC and model TEC (LTF) was 5.30 TECU and 95 %. The results indicate that solar components, as well as annual and semi-annual variations, have a significant impact on the daily average TEC. Solar activity appears to be the predominant determining factor of TEC during the solar phases of cycles 23 and 24. In contrast, periodic influences primarily outline TEC during periods characterized by minimal solar activity. The geomagnetic component presents an increased influence, particularly during storm periods. The model demonstrates superior performance in Total TEC modeling compared to other state-of-the-art approaches.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.