{"title":"M 3 Rec:用于冷启动推荐的基于模型的上下文感知离线元级强化学习方法","authors":"Yanan Wang, Yong Ge, Zhepeng Li, Li Li, Rui Chen","doi":"10.1145/3659947","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) has shown great promise in optimizing long-term user interest in recommender systems. However, existing RL-based recommendation methods need a large number of interactions for each user to learn the recommendation policy. The challenge becomes more critical when recommending to new users who have a limited number of interactions. To that end, in this paper, we address the cold-start challenge in the RL-based recommender systems by proposing a novel context-aware offline meta-level model-based reinforcement learning approach for user adaptation. Our proposed approach learns to infer each user's preference with a user context variable that enables recommendation systems to better adapt to new users with limited contextual information. To improve adaptation efficiency, our approach learns to recover the user choice function and reward from limited contextual information through an inverse reinforcement learning method, which is used to assist the training of a meta-level recommendation agent. To avoid the need for online interaction, the proposed method is trained using historically collected offline data. Moreover, to tackle the challenge of offline policy training, we introduce a mutual information constraint between the user model and recommendation agent. Evaluation results show the superiority of our developed offline policy learning method when adapting to new users with limited contextual information. In addition, we provide a theoretical analysis of the recommendation performance bound.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M\\n 3\\n Rec: A Context-aware Offline Meta-level Model-based Reinforcement Learning Approach for Cold-Start Recommendation\",\"authors\":\"Yanan Wang, Yong Ge, Zhepeng Li, Li Li, Rui Chen\",\"doi\":\"10.1145/3659947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) has shown great promise in optimizing long-term user interest in recommender systems. However, existing RL-based recommendation methods need a large number of interactions for each user to learn the recommendation policy. The challenge becomes more critical when recommending to new users who have a limited number of interactions. To that end, in this paper, we address the cold-start challenge in the RL-based recommender systems by proposing a novel context-aware offline meta-level model-based reinforcement learning approach for user adaptation. Our proposed approach learns to infer each user's preference with a user context variable that enables recommendation systems to better adapt to new users with limited contextual information. To improve adaptation efficiency, our approach learns to recover the user choice function and reward from limited contextual information through an inverse reinforcement learning method, which is used to assist the training of a meta-level recommendation agent. To avoid the need for online interaction, the proposed method is trained using historically collected offline data. Moreover, to tackle the challenge of offline policy training, we introduce a mutual information constraint between the user model and recommendation agent. Evaluation results show the superiority of our developed offline policy learning method when adapting to new users with limited contextual information. In addition, we provide a theoretical analysis of the recommendation performance bound.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3659947\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3659947","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
M
3
Rec: A Context-aware Offline Meta-level Model-based Reinforcement Learning Approach for Cold-Start Recommendation
Reinforcement learning (RL) has shown great promise in optimizing long-term user interest in recommender systems. However, existing RL-based recommendation methods need a large number of interactions for each user to learn the recommendation policy. The challenge becomes more critical when recommending to new users who have a limited number of interactions. To that end, in this paper, we address the cold-start challenge in the RL-based recommender systems by proposing a novel context-aware offline meta-level model-based reinforcement learning approach for user adaptation. Our proposed approach learns to infer each user's preference with a user context variable that enables recommendation systems to better adapt to new users with limited contextual information. To improve adaptation efficiency, our approach learns to recover the user choice function and reward from limited contextual information through an inverse reinforcement learning method, which is used to assist the training of a meta-level recommendation agent. To avoid the need for online interaction, the proposed method is trained using historically collected offline data. Moreover, to tackle the challenge of offline policy training, we introduce a mutual information constraint between the user model and recommendation agent. Evaluation results show the superiority of our developed offline policy learning method when adapting to new users with limited contextual information. In addition, we provide a theoretical analysis of the recommendation performance bound.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.