不定复数空间形式的复数子线面

IF 0.8 3区 数学 Q2 MATHEMATICS
Xiaoliang Cheng, Yihong Hao, Yuan Yuan, Xu Zhang
{"title":"不定复数空间形式的复数子线面","authors":"Xiaoliang Cheng, Yihong Hao, Yuan Yuan, Xu Zhang","doi":"10.1090/proc/16743","DOIUrl":null,"url":null,"abstract":"In this short paper, we derive a new result on Umehara algebra. As a consequence, we prove that an indefinite complex hyperbolic space and an indefinite complex projective space do not share a common complex submanifold with induced metrics, answering a question raised in Cheng et al.","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex submanifolds of indefinite complex space forms\",\"authors\":\"Xiaoliang Cheng, Yihong Hao, Yuan Yuan, Xu Zhang\",\"doi\":\"10.1090/proc/16743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short paper, we derive a new result on Umehara algebra. As a consequence, we prove that an indefinite complex hyperbolic space and an indefinite complex projective space do not share a common complex submanifold with induced metrics, answering a question raised in Cheng et al.\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16743\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们推导出梅原代数的一个新结果。因此,我们证明了一个不定复双曲空间和一个不定复投影空间不共享一个具有诱导度量的共同复子平面,回答了 Cheng 等人提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex submanifolds of indefinite complex space forms
In this short paper, we derive a new result on Umehara algebra. As a consequence, we prove that an indefinite complex hyperbolic space and an indefinite complex projective space do not share a common complex submanifold with induced metrics, answering a question raised in Cheng et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信