基于多级机制-数据融合的液压齿轮泵状态监测方法

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Linlin Ren, Hongbo Ma, Wen Zhou, Shuhan Huang, Xueying Wu
{"title":"基于多级机制-数据融合的液压齿轮泵状态监测方法","authors":"Linlin Ren, Hongbo Ma, Wen Zhou, Shuhan Huang, Xueying Wu","doi":"10.1155/2024/5587168","DOIUrl":null,"url":null,"abstract":"Pumps are important components in aviation fuel hydraulic systems, and thanks to the development of sensor technology and industrial intelligence technology, it is possible to achieve efficient state monitoring of pumps. However, when data quality is poor or the amount of data is small, a single data-driven model may not be able to meet diagnostic accuracy. A condition monitoring method for hydraulic gear pumps based on mechanism-data fusion is proposed. The method combines a mechanism model based on the volumetric efficiency formula with a data-driven model based on vibration signals. First, the parameters of volumetric efficiency are solved by fitting the pressure–flow relationship. Subsequently, a multichannel fusion and multikernel function-weighted ensemble support vector classification (MCMK-SVC) is developed, to establish a data-driven model. Finally, through data-level fusion, feature-level fusion, and decision-level fusion, a condition monitoring model based on mechanism-data fusion is built. Experimental verification shows that the accuracy of the three levels of fusion models exceeds 96.9%. Compared to the single data-driven model or other traditional data-driven models, the accuracy of the proposed method has improved by 3% to 33%, demonstrating the effectiveness of the mechanism-data fusion model.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Condition Monitoring Method of Hydraulic Gear Pumps Based on Multilevel Mechanism-Data Fusion\",\"authors\":\"Linlin Ren, Hongbo Ma, Wen Zhou, Shuhan Huang, Xueying Wu\",\"doi\":\"10.1155/2024/5587168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pumps are important components in aviation fuel hydraulic systems, and thanks to the development of sensor technology and industrial intelligence technology, it is possible to achieve efficient state monitoring of pumps. However, when data quality is poor or the amount of data is small, a single data-driven model may not be able to meet diagnostic accuracy. A condition monitoring method for hydraulic gear pumps based on mechanism-data fusion is proposed. The method combines a mechanism model based on the volumetric efficiency formula with a data-driven model based on vibration signals. First, the parameters of volumetric efficiency are solved by fitting the pressure–flow relationship. Subsequently, a multichannel fusion and multikernel function-weighted ensemble support vector classification (MCMK-SVC) is developed, to establish a data-driven model. Finally, through data-level fusion, feature-level fusion, and decision-level fusion, a condition monitoring model based on mechanism-data fusion is built. Experimental verification shows that the accuracy of the three levels of fusion models exceeds 96.9%. Compared to the single data-driven model or other traditional data-driven models, the accuracy of the proposed method has improved by 3% to 33%, demonstrating the effectiveness of the mechanism-data fusion model.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5587168\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5587168","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

泵是航空燃油液压系统中的重要组件,由于传感器技术和工业智能技术的发展,实现泵的高效状态监测成为可能。然而,当数据质量较差或数据量较小时,单一的数据驱动模型可能无法满足诊断精度的要求。本文提出了一种基于机构-数据融合的液压齿轮泵状态监测方法。该方法将基于容积效率公式的机构模型与基于振动信号的数据驱动模型相结合。首先,通过拟合压力-流量关系求解容积效率参数。随后,开发了多通道融合和多核函数加权集合支持向量分类(MCMK-SVC),以建立数据驱动模型。最后,通过数据级融合、特征级融合和决策级融合,建立了基于机制-数据融合的状态监测模型。实验验证表明,三级融合模型的准确率超过 96.9%。与单一数据驱动模型或其他传统数据驱动模型相比,所提方法的准确率提高了 3% 至 33%,证明了机制-数据融合模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Condition Monitoring Method of Hydraulic Gear Pumps Based on Multilevel Mechanism-Data Fusion
Pumps are important components in aviation fuel hydraulic systems, and thanks to the development of sensor technology and industrial intelligence technology, it is possible to achieve efficient state monitoring of pumps. However, when data quality is poor or the amount of data is small, a single data-driven model may not be able to meet diagnostic accuracy. A condition monitoring method for hydraulic gear pumps based on mechanism-data fusion is proposed. The method combines a mechanism model based on the volumetric efficiency formula with a data-driven model based on vibration signals. First, the parameters of volumetric efficiency are solved by fitting the pressure–flow relationship. Subsequently, a multichannel fusion and multikernel function-weighted ensemble support vector classification (MCMK-SVC) is developed, to establish a data-driven model. Finally, through data-level fusion, feature-level fusion, and decision-level fusion, a condition monitoring model based on mechanism-data fusion is built. Experimental verification shows that the accuracy of the three levels of fusion models exceeds 96.9%. Compared to the single data-driven model or other traditional data-driven models, the accuracy of the proposed method has improved by 3% to 33%, demonstrating the effectiveness of the mechanism-data fusion model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信