{"title":"非饱和无限坡滞后渗流对特殊气候季节的长期 \"记忆\"","authors":"Diana Bianchi, Domenico Gallipoli, Rossella Bovolenta, Martino Leoni","doi":"10.1007/s11440-024-02307-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the “memory” of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7207 - 7227"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02307-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Long-term “memory” of extraordinary climatic seasons in the hysteretic seepage of an unsaturated infinite slope\",\"authors\":\"Diana Bianchi, Domenico Gallipoli, Rossella Bovolenta, Martino Leoni\",\"doi\":\"10.1007/s11440-024-02307-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the “memory” of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"19 11\",\"pages\":\"7207 - 7227\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11440-024-02307-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02307-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02307-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Long-term “memory” of extraordinary climatic seasons in the hysteretic seepage of an unsaturated infinite slope
This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the “memory” of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.