论泊松-恩斯特-普朗克-纳维尔-斯托克斯系统解的良好拟合和衰减率

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoping Zhai, Zhigang Wu
{"title":"论泊松-恩斯特-普朗克-纳维尔-斯托克斯系统解的良好拟合和衰减率","authors":"Xiaoping Zhai,&nbsp;Zhigang Wu","doi":"10.1007/s00021-024-00867-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the initial value problem associated to the Poisson–Nernst–Planck–Navier–Stokes system which is first derived by Wang et al. (J Differ Equ 262:68–115, 2017) through an Energetic Variational Approach (EVA). Exploiting harmonic analysis tools (especially Littlewood–Paley theory), we first study the local and global well-posedness of the system in critical Besov spaces. Then, under a suitable condition involving only low-frequency of initial data, we use the Lyapunov-type inequality of the energy functionals to establish optimal time decay rates for the constructed global solutions. The proof crucially depends on a careful analysis for treating the extra effect of the distribution for the negative (positive) charge and non-standard product estimates, interpolation inequalities.\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Well-Posedness and Decay Rates of Solutions to the Poisson–Nernst–Planck–Navier–Stokes System\",\"authors\":\"Xiaoping Zhai,&nbsp;Zhigang Wu\",\"doi\":\"10.1007/s00021-024-00867-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the initial value problem associated to the Poisson–Nernst–Planck–Navier–Stokes system which is first derived by Wang et al. (J Differ Equ 262:68–115, 2017) through an Energetic Variational Approach (EVA). Exploiting harmonic analysis tools (especially Littlewood–Paley theory), we first study the local and global well-posedness of the system in critical Besov spaces. Then, under a suitable condition involving only low-frequency of initial data, we use the Lyapunov-type inequality of the energy functionals to establish optimal time decay rates for the constructed global solutions. The proof crucially depends on a careful analysis for treating the extra effect of the distribution for the negative (positive) charge and non-standard product estimates, interpolation inequalities.\\n</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00867-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00867-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑与 Poisson-Nernst-Planck-Navier-Stokes 系统相关的初值问题,该问题由 Wang 等人(J Differ Equ 262:68-115, 2017)通过能量变分法(EVA)首次得出。利用谐波分析工具(尤其是 Littlewood-Paley 理论),我们首先研究了该系统在临界 Besov 空间中的局部和全局好摆性。然后,在一个只涉及初始数据低频的适当条件下,我们利用能量函数的 Lyapunov 型不等式,为所构建的全局解建立最佳时间衰减率。证明的关键取决于对负(正)电荷分布的额外影响和非标准乘积估计、插值不等式的仔细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Well-Posedness and Decay Rates of Solutions to the Poisson–Nernst–Planck–Navier–Stokes System

We consider the initial value problem associated to the Poisson–Nernst–Planck–Navier–Stokes system which is first derived by Wang et al. (J Differ Equ 262:68–115, 2017) through an Energetic Variational Approach (EVA). Exploiting harmonic analysis tools (especially Littlewood–Paley theory), we first study the local and global well-posedness of the system in critical Besov spaces. Then, under a suitable condition involving only low-frequency of initial data, we use the Lyapunov-type inequality of the energy functionals to establish optimal time decay rates for the constructed global solutions. The proof crucially depends on a careful analysis for treating the extra effect of the distribution for the negative (positive) charge and non-standard product estimates, interpolation inequalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信