Alistair Maguire, Leanne Smart, Lucinda K. Layfield, Mike Bower, N. Schofield
{"title":"钻探过程中的前瞻性电阻率工具及其在包含复杂火山地质的沉积盆地钻探中的作用","authors":"Alistair Maguire, Leanne Smart, Lucinda K. Layfield, Mike Bower, N. Schofield","doi":"10.1144/petgeo2024-012","DOIUrl":null,"url":null,"abstract":"\n Developments in ultradeep azimuthal resistivity (UDAR) technology has recently progressed from their application in high-angle and horizontal wells to low-angle and vertical wells. This has presented the opportunity to assess their suitability as derisking tools because of their ability to look ahead of the bit, up to\n c\n . 100 ft (\n c.\n 30.5 m).\n \n Dominated by a complex interplay of structure, sedimentation, and volcanic activity, the NE Atlantic Margin presents a challenging environment to plan and drill wells safely and within planned budget, with many wells drilled within the Faroe-Shetland Basin (FSB) currently the most expensive to-date within the United Kingdom continental shelf (UKCS). The limited number of wells drilled in the FSB and their geographical sparsity relative to those of other areas of the UKCS, make offset analysis and derisking a challenge. The often-unpredictable distribution of igneous rocks throughout the basin presents significant challenges in the planning and drilling of oil and gas wells. Up to 88% of igneous intrusions within the FSB are estimated to be below seismic resolution, which alongside variation in composition, presents significant issues related to drilling safely, efficiently and successfully.\n Within this paper, we investigate the use of UDAR technology and how they could be deployed in areas of complex volcanic geology such as the West of Shetland (WoS). This paper reviews the nature of the drilling experiences within the FSB to date, the impact it has on exploration, and how improvements in drilling technology could help decrease nonproductive time (NPT).\n \n Thematic collection:\n This article is part of the UKCS Atlantic Margin collection available at:\n https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin\n","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Look-ahead-while-drilling resistivity tools and their role in drilling sedimentary basins containing complex volcanic geology\",\"authors\":\"Alistair Maguire, Leanne Smart, Lucinda K. Layfield, Mike Bower, N. Schofield\",\"doi\":\"10.1144/petgeo2024-012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Developments in ultradeep azimuthal resistivity (UDAR) technology has recently progressed from their application in high-angle and horizontal wells to low-angle and vertical wells. This has presented the opportunity to assess their suitability as derisking tools because of their ability to look ahead of the bit, up to\\n c\\n . 100 ft (\\n c.\\n 30.5 m).\\n \\n Dominated by a complex interplay of structure, sedimentation, and volcanic activity, the NE Atlantic Margin presents a challenging environment to plan and drill wells safely and within planned budget, with many wells drilled within the Faroe-Shetland Basin (FSB) currently the most expensive to-date within the United Kingdom continental shelf (UKCS). The limited number of wells drilled in the FSB and their geographical sparsity relative to those of other areas of the UKCS, make offset analysis and derisking a challenge. The often-unpredictable distribution of igneous rocks throughout the basin presents significant challenges in the planning and drilling of oil and gas wells. Up to 88% of igneous intrusions within the FSB are estimated to be below seismic resolution, which alongside variation in composition, presents significant issues related to drilling safely, efficiently and successfully.\\n Within this paper, we investigate the use of UDAR technology and how they could be deployed in areas of complex volcanic geology such as the West of Shetland (WoS). This paper reviews the nature of the drilling experiences within the FSB to date, the impact it has on exploration, and how improvements in drilling technology could help decrease nonproductive time (NPT).\\n \\n Thematic collection:\\n This article is part of the UKCS Atlantic Margin collection available at:\\n https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin\\n\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2024-012\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2024-012","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Look-ahead-while-drilling resistivity tools and their role in drilling sedimentary basins containing complex volcanic geology
Developments in ultradeep azimuthal resistivity (UDAR) technology has recently progressed from their application in high-angle and horizontal wells to low-angle and vertical wells. This has presented the opportunity to assess their suitability as derisking tools because of their ability to look ahead of the bit, up to
c
. 100 ft (
c.
30.5 m).
Dominated by a complex interplay of structure, sedimentation, and volcanic activity, the NE Atlantic Margin presents a challenging environment to plan and drill wells safely and within planned budget, with many wells drilled within the Faroe-Shetland Basin (FSB) currently the most expensive to-date within the United Kingdom continental shelf (UKCS). The limited number of wells drilled in the FSB and their geographical sparsity relative to those of other areas of the UKCS, make offset analysis and derisking a challenge. The often-unpredictable distribution of igneous rocks throughout the basin presents significant challenges in the planning and drilling of oil and gas wells. Up to 88% of igneous intrusions within the FSB are estimated to be below seismic resolution, which alongside variation in composition, presents significant issues related to drilling safely, efficiently and successfully.
Within this paper, we investigate the use of UDAR technology and how they could be deployed in areas of complex volcanic geology such as the West of Shetland (WoS). This paper reviews the nature of the drilling experiences within the FSB to date, the impact it has on exploration, and how improvements in drilling technology could help decrease nonproductive time (NPT).
Thematic collection:
This article is part of the UKCS Atlantic Margin collection available at:
https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.