水环境中表面相图的比较分析:隐式溶解模型与显式溶解模型

Jing Yang, M. Todorova, Jörg Neugebauer
{"title":"水环境中表面相图的比较分析:隐式溶解模型与显式溶解模型","authors":"Jing Yang, M. Todorova, Jörg Neugebauer","doi":"10.1063/5.0190304","DOIUrl":null,"url":null,"abstract":"Identifying the stable surface phases under a given electrochemical conditions serves as the basis for studying the atomistic mechanism of reactions at solid/water interfaces. In this work, we systematically compare the performance of the two main approaches that are used to capture the impact of an aqueous environment, implicit and explicit solvent, on surface energies and phase diagrams. As a model system, we consider the magnesium/water interface with (i) Ca substitution and (ii) proton and hydroxyl adsorption. We show that while the implicit solvent model is computationally very efficient, it suffers from two shortcomings. First, the choice of the implicit solvent parameters significantly influences the energy landscape in the vicinity of the surface. The default parameters benchmarked on solvation in water underestimate the energy of the dissolved Mg ion and lead to spontaneous dissolution of the surface atom, resulting in large differences in the surface energetics. Second, in systems containing a charged surface and a solvated ion, the implicit solvent model may not converge to the energetically stable ionic charge state but remain in a high-energy metastable configuration, representing the neutral charge state of the ion. When these two issues are addressed, surface phase diagrams that closely match the explicit water results can be obtained. This makes the implicit solvent model highly attractive as a computationally-efficient surrogate model to compute surface energies and phase diagrams.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"1 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of surface phase diagrams in aqueous environment: Implicit vs explicit solvation models.\",\"authors\":\"Jing Yang, M. Todorova, Jörg Neugebauer\",\"doi\":\"10.1063/5.0190304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the stable surface phases under a given electrochemical conditions serves as the basis for studying the atomistic mechanism of reactions at solid/water interfaces. In this work, we systematically compare the performance of the two main approaches that are used to capture the impact of an aqueous environment, implicit and explicit solvent, on surface energies and phase diagrams. As a model system, we consider the magnesium/water interface with (i) Ca substitution and (ii) proton and hydroxyl adsorption. We show that while the implicit solvent model is computationally very efficient, it suffers from two shortcomings. First, the choice of the implicit solvent parameters significantly influences the energy landscape in the vicinity of the surface. The default parameters benchmarked on solvation in water underestimate the energy of the dissolved Mg ion and lead to spontaneous dissolution of the surface atom, resulting in large differences in the surface energetics. Second, in systems containing a charged surface and a solvated ion, the implicit solvent model may not converge to the energetically stable ionic charge state but remain in a high-energy metastable configuration, representing the neutral charge state of the ion. When these two issues are addressed, surface phase diagrams that closely match the explicit water results can be obtained. This makes the implicit solvent model highly attractive as a computationally-efficient surrogate model to compute surface energies and phase diagrams.\",\"PeriodicalId\":501648,\"journal\":{\"name\":\"The Journal of Chemical Physics\",\"volume\":\"1 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0190304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0190304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定特定电化学条件下的稳定表面相是研究固/水界面反应原子机制的基础。在这项工作中,我们系统地比较了用于捕捉水环境(隐式溶剂和显式溶剂)对表面能和相图影响的两种主要方法的性能。作为一个模型系统,我们考虑了镁/水界面的(i)钙取代和(ii)质子和羟基吸附。我们的研究表明,虽然隐式溶剂模型的计算效率很高,但它有两个缺点。首先,隐式溶剂参数的选择极大地影响了表面附近的能谱。以水中溶解为基准的默认参数低估了溶解镁离子的能量,导致表面原子自发溶解,从而造成表面能量的巨大差异。其次,在包含带电表面和溶解离子的系统中,隐式溶剂模型可能不会收敛到能量稳定的离子电荷状态,而是停留在代表离子中性电荷状态的高能逸散构型。当这两个问题得到解决后,就可以得到与显式水结果非常吻合的表面相图。这使得隐式溶剂模型作为计算表面能和相图的高效代用模型极具吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of surface phase diagrams in aqueous environment: Implicit vs explicit solvation models.
Identifying the stable surface phases under a given electrochemical conditions serves as the basis for studying the atomistic mechanism of reactions at solid/water interfaces. In this work, we systematically compare the performance of the two main approaches that are used to capture the impact of an aqueous environment, implicit and explicit solvent, on surface energies and phase diagrams. As a model system, we consider the magnesium/water interface with (i) Ca substitution and (ii) proton and hydroxyl adsorption. We show that while the implicit solvent model is computationally very efficient, it suffers from two shortcomings. First, the choice of the implicit solvent parameters significantly influences the energy landscape in the vicinity of the surface. The default parameters benchmarked on solvation in water underestimate the energy of the dissolved Mg ion and lead to spontaneous dissolution of the surface atom, resulting in large differences in the surface energetics. Second, in systems containing a charged surface and a solvated ion, the implicit solvent model may not converge to the energetically stable ionic charge state but remain in a high-energy metastable configuration, representing the neutral charge state of the ion. When these two issues are addressed, surface phase diagrams that closely match the explicit water results can be obtained. This makes the implicit solvent model highly attractive as a computationally-efficient surrogate model to compute surface energies and phase diagrams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信