更好地利用合成聚合物的可持续战略。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2024-04-26 DOI:10.1002/bip.23581
G. Shanthi, J. Beula Isabel, Rosbin Thankachan, M. Premalatha
{"title":"更好地利用合成聚合物的可持续战略。","authors":"G. Shanthi,&nbsp;J. Beula Isabel,&nbsp;Rosbin Thankachan,&nbsp;M. Premalatha","doi":"10.1002/bip.23581","DOIUrl":null,"url":null,"abstract":"<p>The abstract provides an overview of a study focused on analyzing diverse strategies to achieve sustainable utilization of synthetic polymers through effective waste management. The escalating global consumption of synthetic polymers has precipitated a concerning increase in plastic waste and environmental degradation. To address this challenge, novel materials with specified application goals, such as engineered plastic, have been developed and are intended for recycling and reuse. Despite the reuse and recycling, when plastic gets disposed into the environment, the degradation properties of plastics render a direct disposal hazard, posing a significant environmental threat. To mitigate these issues, the concept of replacing specific monomers of engineered synthetic plastics with bio-alternatives or blending them with other polymers to enhance sustainability and environmental compatibility has emerged. In this study, Acrylonitrile Butadiene Styrene (ABS) plastic is the focal material, and three distinct investigations were conducted. First, replacing ABS plastic's butadiene monomer with natural rubber was explored for its properties and environmental impact. Second, ABS plastic was blended with virgin, recycled, and bio-alternatives of PET (polyethylene terephthalate) and PVC (polyvinyl chloride) polymers. Lastly, recycled ABS blended with recycled PET and PVC was analyzed for mechanical properties. Comparative assessments of these blends were made based on mechanical properties, carbon emissions, and cost-effectiveness. The study determined that the r-ABS/r-PVC (recycled) blend exhibited the most favorable characteristics for practical application.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable strategies towards better utilization of synthetic polymers\",\"authors\":\"G. Shanthi,&nbsp;J. Beula Isabel,&nbsp;Rosbin Thankachan,&nbsp;M. Premalatha\",\"doi\":\"10.1002/bip.23581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The abstract provides an overview of a study focused on analyzing diverse strategies to achieve sustainable utilization of synthetic polymers through effective waste management. The escalating global consumption of synthetic polymers has precipitated a concerning increase in plastic waste and environmental degradation. To address this challenge, novel materials with specified application goals, such as engineered plastic, have been developed and are intended for recycling and reuse. Despite the reuse and recycling, when plastic gets disposed into the environment, the degradation properties of plastics render a direct disposal hazard, posing a significant environmental threat. To mitigate these issues, the concept of replacing specific monomers of engineered synthetic plastics with bio-alternatives or blending them with other polymers to enhance sustainability and environmental compatibility has emerged. In this study, Acrylonitrile Butadiene Styrene (ABS) plastic is the focal material, and three distinct investigations were conducted. First, replacing ABS plastic's butadiene monomer with natural rubber was explored for its properties and environmental impact. Second, ABS plastic was blended with virgin, recycled, and bio-alternatives of PET (polyethylene terephthalate) and PVC (polyvinyl chloride) polymers. Lastly, recycled ABS blended with recycled PET and PVC was analyzed for mechanical properties. Comparative assessments of these blends were made based on mechanical properties, carbon emissions, and cost-effectiveness. The study determined that the r-ABS/r-PVC (recycled) blend exhibited the most favorable characteristics for practical application.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23581\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23581","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要概述了一项研究,其重点是分析通过有效的废物管理实现合成聚合物可持续利用的各种战略。随着全球合成聚合物消费量的不断攀升,塑料废弃物的增加和环境退化令人担忧。为了应对这一挑战,人们开发出了具有特定应用目标的新型材料,如工程塑料,并打算进行回收和再利用。尽管进行了再利用和再循环,但当塑料被丢弃到环境中时,塑料的降解特性会造成直接的丢弃危险,对环境构成严重威胁。为了缓解这些问题,出现了用生物替代品替代工程合成塑料的特定单体或将其与其他聚合物混合以提高可持续性和环境兼容性的概念。本研究以丙烯腈-丁二烯-苯乙烯(ABS)塑料为重点材料,进行了三项不同的研究。首先,研究了用天然橡胶替代 ABS 塑料的丁二烯单体的特性和对环境的影响。其次,将 ABS 塑料与 PET(聚对苯二甲酸乙二酯)和 PVC(聚氯乙烯)聚合物的原生、回收和生物替代品混合。最后,分析了回收 ABS 与回收 PET 和 PVC 混合后的机械性能。根据机械性能、碳排放量和成本效益对这些混合物进行了比较评估。研究结果表明,r-ABS/r-PVC(回收)混合物在实际应用中表现出最有利的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable strategies towards better utilization of synthetic polymers

Sustainable strategies towards better utilization of synthetic polymers

Sustainable strategies towards better utilization of synthetic polymers

The abstract provides an overview of a study focused on analyzing diverse strategies to achieve sustainable utilization of synthetic polymers through effective waste management. The escalating global consumption of synthetic polymers has precipitated a concerning increase in plastic waste and environmental degradation. To address this challenge, novel materials with specified application goals, such as engineered plastic, have been developed and are intended for recycling and reuse. Despite the reuse and recycling, when plastic gets disposed into the environment, the degradation properties of plastics render a direct disposal hazard, posing a significant environmental threat. To mitigate these issues, the concept of replacing specific monomers of engineered synthetic plastics with bio-alternatives or blending them with other polymers to enhance sustainability and environmental compatibility has emerged. In this study, Acrylonitrile Butadiene Styrene (ABS) plastic is the focal material, and three distinct investigations were conducted. First, replacing ABS plastic's butadiene monomer with natural rubber was explored for its properties and environmental impact. Second, ABS plastic was blended with virgin, recycled, and bio-alternatives of PET (polyethylene terephthalate) and PVC (polyvinyl chloride) polymers. Lastly, recycled ABS blended with recycled PET and PVC was analyzed for mechanical properties. Comparative assessments of these blends were made based on mechanical properties, carbon emissions, and cost-effectiveness. The study determined that the r-ABS/r-PVC (recycled) blend exhibited the most favorable characteristics for practical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信