共价有机框架合成动力学的种群平衡模型。

Howard Weatherspoon, Baron Peters
{"title":"共价有机框架合成动力学的种群平衡模型。","authors":"Howard Weatherspoon, Baron Peters","doi":"10.1063/5.0197656","DOIUrl":null,"url":null,"abstract":"This study presents a population balance model for the kinetics of nucleation and growth in covalent organic framework (COF) synthesis. The model incorporates second-order nucleation and first-order growth rates, consistent with proposals in the literature. Despite having non-linear terms, an implicit analytic solution is derived and then converted to explicit solutions for the monomer concentration and size distribution of COF flakes as a function of time. For experimental definitions of the induction time and the initial growth rate based on yield (y) vs time (t) curves, the model predicts power-law relationships: tind=0.409kN-1/3kG-2/3cA0-1 and dy/dtmax=0.965kN1/3kG2/3cA0, respectively. We discuss the implications for the interpretation of Arrhenius plots. We also discuss key discrepancies with experiments, including the predicted attainment of 100% yield instead of 30%-40% as observed and the value of the yield at the inflection point in the yield vs time curve. We suggest extensions to the model, including nucleation and growth kinetics with equilibrium solubility limitations and two-dimensional nucleation for the formation of multilayer COF particles.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"53 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A population balance model for the kinetics of covalent organic framework synthesis.\",\"authors\":\"Howard Weatherspoon, Baron Peters\",\"doi\":\"10.1063/5.0197656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a population balance model for the kinetics of nucleation and growth in covalent organic framework (COF) synthesis. The model incorporates second-order nucleation and first-order growth rates, consistent with proposals in the literature. Despite having non-linear terms, an implicit analytic solution is derived and then converted to explicit solutions for the monomer concentration and size distribution of COF flakes as a function of time. For experimental definitions of the induction time and the initial growth rate based on yield (y) vs time (t) curves, the model predicts power-law relationships: tind=0.409kN-1/3kG-2/3cA0-1 and dy/dtmax=0.965kN1/3kG2/3cA0, respectively. We discuss the implications for the interpretation of Arrhenius plots. We also discuss key discrepancies with experiments, including the predicted attainment of 100% yield instead of 30%-40% as observed and the value of the yield at the inflection point in the yield vs time curve. We suggest extensions to the model, including nucleation and growth kinetics with equilibrium solubility limitations and two-dimensional nucleation for the formation of multilayer COF particles.\",\"PeriodicalId\":501648,\"journal\":{\"name\":\"The Journal of Chemical Physics\",\"volume\":\"53 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0197656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0197656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了共价有机框架(COF)合成中成核和生长动力学的种群平衡模型。该模型包含二阶成核率和一阶生长率,与文献中的建议一致。尽管存在非线性项,但还是得出了隐式解析解,然后将其转换为 COF 薄片的单体浓度和尺寸分布随时间变化的显式解。对于基于产量(y)与时间(t)曲线的诱导时间和初始增长率的实验定义,该模型预测了幂律关系:tind=0.409kN-1/3kG-2/3cA0-1 和 dy/dtmax=0.965kN1/3kG2/3cA0 。我们讨论了解释阿伦尼乌斯图的意义。我们还讨论了与实验之间的主要差异,包括预测的 100%产率(而不是观察到的 30%-40%)以及产率与时间曲线拐点处的产率值。我们建议对模型进行扩展,包括具有平衡溶解度限制的成核和生长动力学,以及形成多层 COF 颗粒的二维成核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A population balance model for the kinetics of covalent organic framework synthesis.
This study presents a population balance model for the kinetics of nucleation and growth in covalent organic framework (COF) synthesis. The model incorporates second-order nucleation and first-order growth rates, consistent with proposals in the literature. Despite having non-linear terms, an implicit analytic solution is derived and then converted to explicit solutions for the monomer concentration and size distribution of COF flakes as a function of time. For experimental definitions of the induction time and the initial growth rate based on yield (y) vs time (t) curves, the model predicts power-law relationships: tind=0.409kN-1/3kG-2/3cA0-1 and dy/dtmax=0.965kN1/3kG2/3cA0, respectively. We discuss the implications for the interpretation of Arrhenius plots. We also discuss key discrepancies with experiments, including the predicted attainment of 100% yield instead of 30%-40% as observed and the value of the yield at the inflection point in the yield vs time curve. We suggest extensions to the model, including nucleation and growth kinetics with equilibrium solubility limitations and two-dimensional nucleation for the formation of multilayer COF particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信