{"title":"左束支起搏在心脏再同步化治疗中将超越双心室起搏?","authors":"Akash Batta, Juniali Hatwal","doi":"10.4330/wjc.v16.i4.186","DOIUrl":null,"url":null,"abstract":"The deleterious effects of long-term right ventricular pacing necessitated the search for alternative pacing sites which could prevent or alleviate pacing-induced cardiomyopathy. Until recently, biventricular pacing (BiVP) was the only modality which could mitigate or prevent pacing induced dysfunction. Further, BiVP could resynchronize the baseline electromechanical dssynchrony in heart failure and improve outcomes. However, the high non-response rate of around 20%-30% remains a major limitation. This non-response has been largely attributable to the direct non-physiological stimulation of the left ventricular myocardium bypassing the conduction system. To overcome this limitation, the concept of conduction system pacing (CSP) came up. Despite initial success of the first CSP via His bundle pacing (HBP), certain drawbacks including lead instability and dislodgements, steep learning curve and rapid battery depletion on many occasions prevented its widespread use for cardiac resynchronization therapy (CRT). Subsequently, CSP via left bundle branch-area pacing (LBBP) was developed in 2018, which over the last few years has shown efficacy comparable to BiVP-CRT in small observational studies. Further, its safety has also been well established and is largely free of the pitfalls of the HBP-CRT. In the recent metanalysis by Yasmin et al , comprising of 6 studies with 389 participants, LBBP-CRT was superior to BiVP-CRT in terms of QRS duration, left ventricular ejection fraction, cardiac chamber dimensions, lead thresholds, and functional status amongst heart failure patients with left bundle branch block. However, there are important limitations of the study including the small overall numbers, inclusion of only a single small randomized controlled trial (RCT) and a small follow-up duration. Further, the entire study population analyzed was from China which makes generalizability a concern. Despite the concerns, the meta-analysis adds to the growing body of evidence demonstrating the efficacy of LBBP-CRT. At this stage, one must acknowledge that the fact that still our opinions on this technique are largely based on observational data and there is a dire need for larger RCTs to ascertain the position of LBBP-CRT in management of heart failure patients with left bundle branch block.","PeriodicalId":23800,"journal":{"name":"World Journal of Cardiology","volume":"24 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left bundle branch pacing set to outshine biventricular pacing for cardiac resynchronization therapy?\",\"authors\":\"Akash Batta, Juniali Hatwal\",\"doi\":\"10.4330/wjc.v16.i4.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deleterious effects of long-term right ventricular pacing necessitated the search for alternative pacing sites which could prevent or alleviate pacing-induced cardiomyopathy. Until recently, biventricular pacing (BiVP) was the only modality which could mitigate or prevent pacing induced dysfunction. Further, BiVP could resynchronize the baseline electromechanical dssynchrony in heart failure and improve outcomes. However, the high non-response rate of around 20%-30% remains a major limitation. This non-response has been largely attributable to the direct non-physiological stimulation of the left ventricular myocardium bypassing the conduction system. To overcome this limitation, the concept of conduction system pacing (CSP) came up. Despite initial success of the first CSP via His bundle pacing (HBP), certain drawbacks including lead instability and dislodgements, steep learning curve and rapid battery depletion on many occasions prevented its widespread use for cardiac resynchronization therapy (CRT). Subsequently, CSP via left bundle branch-area pacing (LBBP) was developed in 2018, which over the last few years has shown efficacy comparable to BiVP-CRT in small observational studies. Further, its safety has also been well established and is largely free of the pitfalls of the HBP-CRT. In the recent metanalysis by Yasmin et al , comprising of 6 studies with 389 participants, LBBP-CRT was superior to BiVP-CRT in terms of QRS duration, left ventricular ejection fraction, cardiac chamber dimensions, lead thresholds, and functional status amongst heart failure patients with left bundle branch block. However, there are important limitations of the study including the small overall numbers, inclusion of only a single small randomized controlled trial (RCT) and a small follow-up duration. Further, the entire study population analyzed was from China which makes generalizability a concern. Despite the concerns, the meta-analysis adds to the growing body of evidence demonstrating the efficacy of LBBP-CRT. At this stage, one must acknowledge that the fact that still our opinions on this technique are largely based on observational data and there is a dire need for larger RCTs to ascertain the position of LBBP-CRT in management of heart failure patients with left bundle branch block.\",\"PeriodicalId\":23800,\"journal\":{\"name\":\"World Journal of Cardiology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4330/wjc.v16.i4.186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4330/wjc.v16.i4.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Left bundle branch pacing set to outshine biventricular pacing for cardiac resynchronization therapy?
The deleterious effects of long-term right ventricular pacing necessitated the search for alternative pacing sites which could prevent or alleviate pacing-induced cardiomyopathy. Until recently, biventricular pacing (BiVP) was the only modality which could mitigate or prevent pacing induced dysfunction. Further, BiVP could resynchronize the baseline electromechanical dssynchrony in heart failure and improve outcomes. However, the high non-response rate of around 20%-30% remains a major limitation. This non-response has been largely attributable to the direct non-physiological stimulation of the left ventricular myocardium bypassing the conduction system. To overcome this limitation, the concept of conduction system pacing (CSP) came up. Despite initial success of the first CSP via His bundle pacing (HBP), certain drawbacks including lead instability and dislodgements, steep learning curve and rapid battery depletion on many occasions prevented its widespread use for cardiac resynchronization therapy (CRT). Subsequently, CSP via left bundle branch-area pacing (LBBP) was developed in 2018, which over the last few years has shown efficacy comparable to BiVP-CRT in small observational studies. Further, its safety has also been well established and is largely free of the pitfalls of the HBP-CRT. In the recent metanalysis by Yasmin et al , comprising of 6 studies with 389 participants, LBBP-CRT was superior to BiVP-CRT in terms of QRS duration, left ventricular ejection fraction, cardiac chamber dimensions, lead thresholds, and functional status amongst heart failure patients with left bundle branch block. However, there are important limitations of the study including the small overall numbers, inclusion of only a single small randomized controlled trial (RCT) and a small follow-up duration. Further, the entire study population analyzed was from China which makes generalizability a concern. Despite the concerns, the meta-analysis adds to the growing body of evidence demonstrating the efficacy of LBBP-CRT. At this stage, one must acknowledge that the fact that still our opinions on this technique are largely based on observational data and there is a dire need for larger RCTs to ascertain the position of LBBP-CRT in management of heart failure patients with left bundle branch block.